

Welcome to the first virtual SoftAWERE Workshop

Creating the tools necessary to measure the energy efficiency of open source libraries and components, creating transparency and enabling better choices for developers

We would like to introduce ourselves

A warm welcome from your project team

Bundesministerium für Wirtschaft und Klimaschutz

This workshop aims to enable you to contribute with your expertise

09:45-10:00

(optional)

Introduction to the Miro Tool

part of the workshop

We will explain why the project exists, what we are trying to solve, and how we are planning to solve it.

You will get the chance to discuss the topics of your choice in the breakout rooms and help us to move this project forward.

In the end, we will consolidate and filter the main discussion points in the plenary to derive specific actions from your input.

Optional introduction to Miro, which will be used for the interactive

Software consumes resources.

Software also consumes resources.

Digital power is created by converting electricity into bits - for processing, storage or transport.

The "conversion machines" can be small-scale or largescale.

Its conversion machines which are creating the footprint for software - resource and electricity use.

Its conversion machines which are creating the footprint for software - resource and electricity use.

Electricity

Resources

The chart above is an 'expected case' projection from Anders Andrae, a specialist in sustainable ICT. In his 'best case' scenario, ICT grows to only 8% of total electricity demand by 2030, rather than to 21%.

Software has an environmental footprint, based on electricity & resource consumption of the digital power conversion machines

Sustainable Software Design (SSD) Project

Jens Gröger Senior Researcher for sustainable ICT at Oeko-Institut e.V.

Research Project Sustainable Software Design (SSD)

Development and Application of Criteria for resource-efficient Software Products with Consideration of existing Methods

- Commissioned by German Federal Environment Agency (UBA)
- Published: December 2018
- https://www.umweltbundesamt.de/publikationen/entwicklung-anwendung-vonbewertungsgrundlagen-fuer

Research group

- Oeko-Institut e.V., Products and Material Flows Division
 - Expertise in the sustainability analysis of ICT devices, Development of award criteria for eco-labels
- University of Zurich, Computer Science and Sustainability
 - Expertise in life cycle assessment of ICT devices and infrastructure
- Trier University of Applied Sciences, Environmental Campus Birkenfeld, Institute for Software Systems in Economy, Environment and Administration
 - Expertise in evaluation and software, Green Software and Green Software Engineering

Umwelt-Campus Birkenfeld

HOCHSCHULE TRIER

техте 105/2018

Entwicklung und Anwendung von Bewertungsgrundlagen für ressourceneffiziente Software unter Berücksichtigung bestehender Methodik Abschlussbericht

Research Questions

- Is there a connection between software and resource consumption?
- Is it possible to define **criteria** for assessing the resource use of software?
- Are such criteria suitable for **comparing** different software products?
- Can **minimum requirements** be defined that describe resource-efficient software?

Measurement Setup

Short Introduction Sustainable Software Design Project | Jens Gröger | Berlin | 17.02.2022

Example of a measurement cycle

• Measurement of word processing software usage over 10 minutes

Mean measurement values of word processor 1

Exemplary measurement results usage scenario

• Energy consumption during execution of a standard usage scenario

Most important Results

- Software is responsible for energy consumption and hardware usage and it can contribute to hardware obsolescence.
- A set of criteria for sustainable software was developed which is suitable for the assessment and optimisation of software.
- The application of the criteria catalogue shows **clear differences** between different software products.
- It was possible to **identify criteria** that are suitable for an eco-label for software products.

Öko-Institut e.V.

Enabling IT developers & architects to understand, measure and improve this footprint, therefore is of critical importance to society and businesses addressing their environmental impact.

Majority of software today is build by assembling open source libraries and components.

90% of IT leaders are using enterprise open source today.

U.S.=91%, EMEA=88%, APAC=92%, LATAM=91%

Top ways enterprise open source is being used

- 1. IT infrastructure modernization 64%
- 2. Application development **54%**
- 3. Digital transformation 53%

The State of Enterprise Open Source

So doesn't the choice of components already impact the electricity footprint of an application?

"require": { "ext-date": "*". "ext-dom": "*", "ext-filter": "*". "ext-ad": "*", "ext-hash": "*". "ext-ison": "*". "ext-pore": "*". "ext-PDO": "*". "ext-session": "*", "ext-SimpleXML": "*". "ext-SPL": "*", "ext-tokenizer": "*". "ext-xml": "*". "php": ">=7.3.0", "symfony/console": "^4.4". "symfony/dependency-injection": "^4.4", "symfony/event-dispatcher": "^4.4". "symfony/http-foundation": "^4.4.7", "symfony/http-kernel": "^4.4", "symfony/mime": "^5.4". "symfony/routing": "^4.4", "symfony/serializer": "^4.4", "symfony/translation": "^4.4", "symfony/validator": "^4.4". "symfony/process": "^4.4", "symfony/polyfill-iconv": "^1.0", "symfony/polyfill-php80"; "^1.16". "symfony/yaml": "^4.4.19", "typo3/phar-stream-wrapper": "^3.1.3". "twig/twig": "^2.12.0", "doctrine/reflection": "^1.1", "doctrine/annotations": "^1.12", "guzzlehttp/guzzle": "^6.5.2", "symfony-cmf/routing": "^2.1". "laminas/laminas-feed": "^2.12". "stack/builder": "^1.0". "equlias/email-validator": "^2.1.22|^3.0". "masterminds/html5": "^2.1", "symfony/psr-http-message-bridge": "^2.0". "laminas/laminas-diactoros": "^2.1". "composer/senver": "^3.0". "asm89/stack-cors": "^1.1", "pear/archive_tar": "^1.4.14", "psr/log": "^1.0"

"replace": { "drupal/action": "self.version", "drupal/aggregator": "self.version", "drupal/automated cron": "self.version", "drupal/bartik": "self.version". "drupal/ban": "self.version". "drupal/basic_auth": "self.version", "drupal/big pipe": "self.version". "drupal/block": "self.version", "drupal/block content": "self-version" "drupal/book": "self.version", "drupal/breakpoint": "self.version". "drupal/ckeditor": "self.version". "drupal/ckeditor5": "self.version". "drupal/claro": "self.version". "drupal/classy": "self-version". "drupal/color": "self.version". "drupal/comment": "self.version". "drupal/config": "self.version", "drupal/config_translation": "self.version", "drupal/contact": "self-version". "drupal/content_moderation": "self.version" "drupal/content_translation": "self.version", "drupal/contextual": "self.version", "drupal/core_annotation": "self_version" "drupal/core-assertion": "self.version". "drupal/core-class-finder": "self.version", "drupal/core-dependency-injection": "self.version", "drupal/core-diff": "self.version". "drupal/core-discovery": "self.version", "drupal/core-event-dispatcher": "self.version" "drupal/core-file-cache": "self.version". "drupal/core-file-security": "self.version", "drupal/core-filesystem": "self.version". "drupal/core-front-matter": "self.version", "drupal/core-gettext": "self.version". "drupal/core-graph": "self.version", "drupal/core-http-foundation": "self.version". "drupal/core-php-storage": "self.version", "drupal/core-plugin": "self-version". "drupal/core-proxy-builder": "self.version". "drupal/core-render": "self-version". "drupal/core-serialization": "self.version" "drupal/core=transliteration": "self-version" "drupal/core-utility": "self.version". "drupal/core-uuid": "self.version",

drupal/drupal

Verbatim mirror of the git.drupal.org repository for Drupal core. Please see the https://github.com/drupal/drupal#contributing. PBs are not accepted on GitHub.

였444 ☆4k ¥2k Contributors Used by Stars Forks

O github.com

81 43

GitHub - drupal/drupal: Verbatim mirror of the git.drupal.org repository for Drupal core. Please see the https://github.com/drupal/ PRs are not accepted on GitHub.

11 1

0

Verbatim mirror of the git.drupal.org repository for Drupal core. Please see the https://github.com/drupal/drupal#contributi PRs are not accepted on GitHub. -GitHub - drupal/drupal: Verbatim mi...

We believe so. So the first step is to create transparency and enable choice for developers selecting components:

* There is many ways to approach this label = we will evaluate the best approach during the project.

But how to actually measure the energy efficiency of a software library (without applying it)?

"Software testing is the process of evaluating and verifying that a software product or application does what it is supposed to do." - <u>IBM</u>

"[...] unit testing is a <u>software testing</u> method by which individual units of <u>source code</u>—sets of one or more computer program <u>modules</u> together with associated control data, usage <u>procedures</u>, and operating procedures—are tested to determine whether they are fit for use." - <u>Wikipedia</u>

<u>Scaphandre</u> [skafɑdʁ] is a metrology agent dedicated to electrical <u>power</u> consumption metrics.

•	C Pipelines						🌣 Set	lings
8	web-ui	* 😪 All Pipeline	is -	₽ AII	Branches -			
	PIPELINE STATUS	BRANCH	WORKFLOW	сомм	т	STARTED	DURATION	
۵	#11253 > SUCCESS	renovate/runtime	build-test-and-deploy	۲	Update Runtime dependencies	8 hours ago	8m 50s	
₽	#11252 > 📀 SUCCESS	renovate/devdependencie	es build-test-and-deploy	۲	Update dependency @types/react to v16.9.17	10 hours ago	8m 36s	
	#11251 • 📀 SUCCESS	renovate/runtime	build-test-and-deploy	۲	Update Runtime dependencies	14 hours ago	11m 11s	
	#11250 > • FAILED	renovate/major-runtime	build-test-and-deploy	۲	Update Runtime dependencies	17 hours ago	15m 16s	
	#11249 > 3 FAILED	renovate/major- devdependencies	build-test-and-deploy	۲	Update Development dependencies	17 hours ago	8m 10s	
	#11248 > 🔗 SUCCESS	master	build-test-and-deploy	C	Merge pull request #1586 from circleci	17 hours ago	12m 27s	
	#11247 > Success	renovate/devdependenci	es build-test-and-deploy	۲	Update Development dependencies	17 hours ago	7m 18s	
	#11246 > 🔗 SUCCESS	master	build-test-and-deploy	C	Merge pull request #1589 from circleci	17 hours ago	11m 3s	
	#11245 > 🕑 SUCCESS	renovate/runtime	build-test-and-deploy	۲	Update Runtime dependencies	17 hours ago	9m 55s	
	#11244 > Success	change-proj-link	build-test-and-deploy	8	removing unused import	22 hours ago	6m 54s	
	#11243 CANCELED	change-proj-link	build-test-and-deploy	8	changing 'add new project' link to new onboarding	22 hours ago	7m 55s	
	#11242 > Success	renovate/devdependenci	es build-test-and-deploy	۲	Update Development dependencies	1 day ago	10m 15s	
	#11241 > Success	renovate/devdependenci	es build-test-and-deploy	۲	Update Development dependencies	2 days ago	9m 35s	
	#11240 > GANCELED	renovate/major-runtime	build-test-and-deploy	۲	Update Runtime dependencies	2 days ago	20m 44s	
	#11239 > 🕑 SUCCESS	renovate/runtime	build-test-and-deploy	۲	Update Runtime dependencies	2 days ago	8m 45s	
	#11238 > Success	renovate/runtime	build-test-and-deploy	۲	Update Runtime dependencies	2 days ago	10m 9s	
	#11237 > Success	renovate/devdependenci	es build-test-and-deploy	۲	Update Development dependencies	2 days ago	7m 52s	
	SUCCESS	renovate/devdependenci	es build-test-and-deploy	۲	Update Development dependencies	2 days ago	9m 25s	
	#11236 > 🖉 success	renovate/devdependenci	es build-test-and-deploy	۲	Update Development dependencies	2 days ago	12m 20s	
	#11235 • 🕑 SUCCESS	renovate/devdependencie	es build-test-and-deploy	۲	Update Development dependencies	2 days ago	9m 58s	
	#11234 > Success	master	build-test-and-deploy	C	Merge pull request #1588 from circleci	2 days ago	11m 33s	
			See mor					

Our approach: Record power consumption while each test is executing and report results into CI/CD flow

Percent Status						TotalTests		Pas
42.11%					19		8	
TestCla	sses Sun	mary	Percent	Status	Test	sPassed	Tes	stsf
trx2html.	Test.FailA	ndIgnored	0%		0		2	
trx2html.Test.AllPassed		100%		3		0		
trx2html.Test.SomeIgnored		66.67%		2	2		0	
trx2html.Test.AllFailed			0%		0			
trx2html.Test.SomeFailed			33.33%		1		2	
trx2html.Test.ResourceReaderTest			100%		2	2		
Test Clas		ilAndJanored						
trx2html.Test.FailAndIgnored			atIsIconclusive			00:00:00.001		
. source		Assert.Inconclusive failed. Inconclusive				00.00		
TectMeth	tethod5 TestMethodThatIsIconclusive				00:00:00.001			

In local development environments, physical power measuring infrastructure won't be available

RAPL vs. Using Constants?

And we will look at your IDEs themselves and how much power they consume when used:

Programming languages: Python, Java, C, C++, JavaScript, Go Lang

Development environments: Android Studio, Visual Studio, Eclipse IDE, Jetbrains, Visual Studio Code / GitHub Atom

THE PROJECT

Last, here is what the project will not be or do:

Benchmarking or comparison of libraries

Have 99.999% accuracy in all scenarios

Consider the complete lifecycle impact of the library

Be applicable for user interfaces & GUI

Let's get started with the Breakout Rooms

BREAKOUT ROOMS

	Round 1	Round 2
Room 1 : Methodology: How can energy efficiency of software be measured? Moderator: Jens Gröger	Johnny Westerlund Fiorenza Oppici Matthias Naab Tanjina Islam Joseph De Vaugh-Geiss Jeroen Burks Rafal Tomczyk Marina Emsing Johannes Brand Peter Fernana-Ritchie	Lutz Veldmann Roberta Haseleu Florian Petri Dennis Gumz Dorian Grosch Christoph Buchli Heiner Von Brachel Elmar Borgmeier Ivano Malavolta
Room 2: Application: What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements? Moderator: Chris Adams	Lutz Veldmann Benno Schmidt Roberta Haseleu Jutta Eckstein Elmar Borgmeier Marina Köhn Max Schumacher Jing Jing Kris Sharma	Johnny Westerlund Fiorenza Oppici Tanjina Islam Rafal Tomczyk Marina Emsing Andreas Halatsch Johannes Brand Peter Fernana-Ritchie
Room 3: Outlook: What is the current perception of energy and resource efficiency inside the software community? Where are boundaries towards sustainability? Moderator: Max Schulze	Florian Petri Dennis Gumz Dorian Grosch Christoph Buchli Heiner Von Brachel Andreas Halatsch Ivano Malavolta	Matthias Naab Joseph De Vaugh-Geiss Jeroen Burks Benno Schmidt Jutta Eckstein Marina Köhn Jing Jing Max Schumacher

Welcome back!

Let's discuss in the plenary

4	

Each moderator quickly summarizes the main points of the discussion from the respective breakout room (max. 3 minutes)

We will give the larger group the chance to add to the summary (max. 7 minutes per topic)

After the discussion, we will move on with an open Q&A session on general questions that you have after this workshop

ROOM 1

Methodology

How can energy efficiency of software be measured?

Standardization of the interface of resource consumption <-> software

For mobile applications improving the battery lifetime is a regular habit	There is a lack of tools and methodologies to do this	On server side it is easy to measure the energy consumption	but it's getting complicated if it comes to the actual effects of the software	Installing Software in containers would be an approach to get an interface to these values
Libraries? Modular design of libraries would be fine and tests, which parts are really used (to leave out the unused parts).	There is an incentive to reduce resource consumption on mini-computers (rasberry pi) and old computers (>10a)	Data transfer (e.g. from mobile applications) can be measured in emulators	Public authorities but also a number of companies are interested in getting external impacts (CO2) from their cloud activities	Providers of cloud services (e.g. usage time of HPC) should also report about energy consumption of their services

ROOM 2

Application

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

right now it's difficult to tell scenarios are high leverage because available data is so poor. Spend one of the few proxies we can use	we only have high level power usage figures , service level are necessary to understand which sectors have the most scope for improvement. ML? Browsers? CMS? Video?	this favours very high scale usage scenarios - without visibility on absolute usage it's difficult to tell where the gains lie	there is a trade-off between visible improvements for intensive users (AI), and smaller, but diffuse improvements across a wide user base (browsers?)	do you need absolute resource budgets to act as an incentive in procurement, with proof you stayed inside them?
what about scenarios outside the library? development vs deployment	scenarios with very tight mapping between usage vs test coverage	Some notion of energy cost per feature used in the wild would be needed to inform which parts of a library need attention.	decoupling is a key issue to track - can we represent this in CI? API compatibility?	Teams with efficiency / sustainability budgets to "buy" efficiency on a project

ROOM 3

Outlook

What is the current perception of energy and resource efficiency inside the software community? Where are boundaries towards sustainability?

Q&A

Feel free to ask any additional questions or give feedback on the workshop

Thank you all for joining.

Methodology

How can energy efficiency of software be measured?

1. Do you measure hardware resources when developing software?

- 2. How do you get access to CPU-Load, Storage usage, network traffic, energy consumption?
- 3. How do you choose software-languages, libraries, and plug-ins in concern of resource consumption?

	Webp develop shifts to s framewor to loadin and sec	oment smaller rks (duo ng time	e	Measurin, use of on is easy, vir systems trivi	e serv rtualiz are n	ver zed		CPU tim serv cal dc nee provide	er/ ls ed to	D		some de foi calcula tim	r atio				
Observation: Objective of iscussion: avoiding deployment (containarization, scalability) Proposal: What measurement should we apply to improve ecision making? It doesnt have to be energy measurement.			batt used	much ery is l (in a glass)?		(foi	r all devi	/ usage mobile ices) pmeter		pe de libr	eopl ecid ary	eneral e don't e for a because gy usage		deb (ras very devic	u systems bian) for sr pberrypi) old (10ye es need to at power onsumptio	mall and ars+) o look	

dis (Pi s de

How can energy efficiency of software be measured?

in virtualized context, software that is ready for deployment	if started from scratch, the results of this project. what about existing software?	There are programs that track if libraries are used	On the Android platform, as energy drain is a serious issue	trying by doing in the own server room
clean code habits without measuring the impact (feeling for speed of computer)	data transfer amount and carbon footprint of mobile apps (differentiate between core functionality and ad and tracking)	standard usage scenario recording script (man in the middle proxy)	lack of methodology for everyday work	

Application - round 1 - Max Schumacher

Good architecture helps not wasting resources (e.g. modularity)	Schedule non- time critical jobs to run at time with high renewable energy	Avoid code	
	mix (in Cloud)	waste	

Application - round 1

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

5 mins by yourself try answering the question, and share your rationale when you do

5 mins together share back

10 mins together group reflection and discussion

5 mins together recap, and capture key points as sticky notes for main board

Application - round 1 - Benno Schmidt

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

where a component is called up very often, there is potential (e.g. if a function is called a million times per second).

sensitize developers to the topic integrate the idea of sustainabilty into the software development process (including social sustainability

teach students about existing methodologies

Application - round 1 - Roberta Haseleu

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

Include the idea of sustainability right from the start of software design

Understand how green coding is different from "just" good coding Apply a set of best practices as a standard approach in any software project

A way of proving greeness to customers

Application - round 1 - Jutta Eckstein

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

Ensuring that software is uncoupled from the hardware

Making it mandatory for all software to make the energy consumption transparent (and the mandate might come with enough companies just doing that)

Modern architecture, micro services, etc.

Monitor if features are used (and if not get rid of them) Providing a tool/framework that people can plug in/use when developing individual software

Application - round 2

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

5 mins by yourself try answering the question, and share your rationale when you do

5 mins together share back

10 mins together group reflection and discussion

5 mins together recap, and capture key points as sticky notes for main board

Application - round 2 - Tanjina Islam

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

when you have limited resource to run the software application on

while trasferring data or communicating through the network

Application - round 2 - Johannes Brand

What usage scenarios do we envision and where do we see the highest impact on potential software efficiency improvements?

I think we should focus on the time, cpu and memory consuming tasks. Also very important for "off-grid" applications -> smart devices?

It might be substantial to focus on efficencies not in each individuals code but especally in popular libraries.

Application - round 2 - Peter Fernana-Ritchie

My first thou is "how do define softw efficiency	we vare	deplo environ allows o "measu	ed software byment ment that code to be ured" in a nt manner	Highest impact for developers that I can see is training - how to develop efficient code given todays deployment options	
	A framew allows hardward consumpt eliminated software calcul	"idle" e energy tion to be I from the efficiency			Cloud environments usually provide data on CPU / Mem / storage utilisation which could be a starting point for calculating metrics

Application - round 2 - Mo Gandhi

Can we define software efficiency?	Do we truly understand the trade-offs when calculating efficiency?	How can we create a metric (or suite of metrics) that incentivise increased efficiency?	How can such a metric be used in conjunction with other metrics within the digital supply chain?	How do we implement such a metric proactively? Is it easy to implement and not just manager speak
---	--	--	---	--

Application - round 2 - Erik Albers

ROOM 3 - OUTLOOK

ization