
1© GREENSPECTOR

METHODOLOGICAL GUIDE

Software LCA

IDEA

MANUFACTURING

USAGE

REUSE

RECYCLING

2© GREENSPECTOR

(+33) 9 51 44 55 79

contact@greenspector.com

Don’t miss out on our other sofware
eco-design resources:

YES, I WANT TO KNOW MORE!

THANK YOU FOR
DOWNLOADING!

3© GREENSPECTOR

I Why conducting a software LCA?

Eco-design consists in taking into
account environmental and

sanitary impacts during conception or
improvement phases of a product or service.
It is perceived more and more like a value
creation process, in all kind of businesses
and areas. This phenomenon is growing as
companies get more sensitive to their share
of responsibility in the future of subjects
such as our planet or next generations. The
other reason is firms realize the numerous
benefits they can get out of such a process.

There is actually a domain eco-design is
in the introduction phase: the software
world, in which most methods and best-
practices remain to be written. Plus, just
like in any other economical areas, the
benefits perceived by the different actors
from the digital world are numerous and
very interesting:

Software eco-design is perceived
more and more like a value
creation process, in all kind of

More and more norms are inflicted to
companies to make products, and more
generally the economy, more virtuous
environment-wise. For instance, think
of Electrical and Electronic Equipment
related rules (EEE), RoHS, WEEE, REACH
or ErP, aiming at making products
less polluting. We could also mention
current or future government attempts
to integrate environment deterioration
costs to our economy, which as of today
aren’t undertaken by companies (negative
externalities): CO2 emission rights, carbon
tax, etc. Now these rules are implemented
and others around the corner, it is safe to
say companies which already considered
this eco-design issue are a step ahead
have a true competitive advantage
compared to other firms.By trying to reduce resources or raw material

needed to produce a good, eco-design also
allows to decrease manufacturing costs.
This principle is applicable to software as well.
Indeed, in the software production phase,
lowering the number of functionalities
to develop, the amount of work stations
to deploy, the quantity of impressions to
generate or the energy needed for the
software to function, is a way to reduce
pollutions generated by the activity, as well
as diminish software manufacturing costs.

Cost reduction

Anticipation of
environmental rules

Product differentiation

« Eco-designing » is also developing a
better-quality product that is at the same
time more resistant, more durable and
more frugal for the user; as these benefits
go tightly with the impact reduction of
the product on the environment and/or
the extension of its active life cycle. The
user can get the most of it. For example,

4© GREENSPECTOR

power consumption is an actual issue for a
datacenter manager, who would perceive
greatly a less energy consuming software,
especially in an area such as this one
where “Cloud operators” keep appearing
on the market and better optimize their
resources usage. Also, mobile platform
autonomy is a key stake for smartphones
and tablets’ constructors and users, battery
consumption it generates is a metrics to
take into account.

other type of product.
We are in a time consumers are more
and more attentive to corporate social
responsibility (CSR) efforts of companies,
and being actively engaged in applying
software eco-design principles for sure
benefits a company’s image and prestige,
with positive financial impacts.

Innovation factor

The French Ministry of Ecology, Environment
and Sustainable Development declares on
its website: 1 (translated to English) :

« Eco-design is a spur for innovation, both at
the product function level and the different
steps of its life cycle. Having a fresh look
to optimize consumptions (materials
and energy) and to reduce pollutions can
sometimes lead to brand new ideas for a
product’s components, the way it works or
the technologies it uses».

This is true for software, but also for any

Company’s image

After making these observations, a group
of « Green IT » experts founded the Green
Code Lab which goal is to promote
Software eco-design and offer tools and
methods to facilitate the implementation.

As part of the collaboration between
Orange and GREENSPECTOR, winner of
a call for projects on software eco-design
launched by ADEME, both companies
brought each of their expertise together
to continue working on the subject
presented on this Methodological Guide
to software LCA.

We offer here a methodology to conduct
a software Life Cycle Assessment (LCA)
that truly suits the objective of defining a
methodology to diffuse widely in order to
initiate future requests of software impact

evaluation.

Indeed, LCA is a central tool that is a key
element in software eco-design. We are
in a case of standardized methodology
(ISO14040 and ISO14044 among others)
which lets you assess the environmental
impacts of manufactured goods, services
and processes, and this in a very complete
way. Examining pollutions generated
at every single stage of the product life
cycle (conception, production, usage
and decline) permits to not forget any of
them and figure out which stage pollutes
the most (the one you should focus on
at first). This effort will vary depending
on the company’s decisions, choices and

LCA is a tool you can’t pass on
when it comes to software eco-
design. This methodology lets you
assess the environmental impacts
of manufactured goods, services
and processes, and this in a very

1 http://www.developpement-durable.gouv.fr/L-eco-conception-c-est-quoi.html

5© GREENSPECTOR

strategical constraints.

Having an overall vision of all stages also
allows you to make sure a solution lowering
the impact on the environment at a certain
stage will not generate more pollution
at another stage of the product life cycle
(avoiding pollution and/or impact transfer).

As a consequence, the purpose of the
Methodological Guide to software LCA
is to offer a methodology to conduct a
software LCA.

Defining a mutual methodology to this
category of products is justified by the
fact that software, that are often wrongly
considered as intangible, hold specific
features different from the «average
tangible» products. This intangibility raises
questions on what is the best way to
conduct such an analysis on software.

We will put the emphasis on describing
these specific features and presenting what
we believe is the best approach to meet
the objectives we would have previously
set. Then, we will explain in detail how to
implement this approach in the different
normalized LCA stages.

Let’s point out that the social aspect, which
is one of the three pillars of sustainability
and to which the Green Code Lab
particularly pays attention, isn’t discussed
directly in this document (beside the
indirect sanitary impacts). However, social2
LCA methodologies exist widely, and
what is mentioned here is applicable and
transposable to any social and societal
impact analysis.

2 Outil GSF de NTT NTT-Orange collaboration et Rapsodie Gross Social Feel-good Index—Social Impact Assessment
for ICT Services : https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200703043.pdf

6© GREENSPECTOR

As we will see further down, the first
step in a software LCA is the defintition

of goals and scope of study.

This step is essential as it will impact
numerous factors choosing in what way
the next steps of the study should be
organized, but also the results of the study
themselves. That is the reason why LCAs
are said to be « goal dependent ».

When it comes to software, we can identify
several goals:

Studying environmental impacts of a given
software (already performed): consumption
of non-renewable resources, energy,
pollutant emission (chemical or particles)
in water, air and soils.

Studying
environmental

Determining the most impactful stages
in a software life cycle: production/
development, usage, transportation, and
decline. This particular type of study can
narrow down to just software categories
(email software, word processing software,
CMS, web pages…)

Determining the most
impactful stages in the life

Comparing environmental
impacts

Comparing environmental impacts of
several products or software solutions
in order to pick the one with the lower
environmental impact. As a consequence,
users (Information System Department,
individuals, etc) or developers/integrators
facing technological choices can use this
tool. In the context of a compared LCA
(evolution of a software or new product),
only the phases that changed between
the two versions of product/service will
be calculated. But careful, comparing
two LCAs can be tricky. In order to be
trustworthy, the comparison should be
executed with the same software, at the
same date, with the same cut-off rules
and, if possible, by the same person.

Just like any other LCA, in order to be
published, a software LCA must be the
subject of an independent critical review.

Identifying improvement
opportunities for impacts

Identifying improvement opportunities
for future products, as well as ones for the
reduction of impacts on the environment.
This aim is particularly targeted by editors
and software creator that are mindful
to develop a product with a better
environmental quality.

II What are the goals of a software LCA?

Comparing environmental impacts of several
products or software solutions in order to pick the
one with the lower environmental impact.

7© GREENSPECTOR

T his part aims at presenting
characteristics specific to software

during a life cycle assessment (LCA).

For each issue raised by these features, we
will explain what approach we recommend
to assess environmental impacts.

3.1 Software: tangible or intangible?

3.2 Should we isolate software from its
operating environment?

Software is a very special type of good:

- It doesn’t produce any direct tangible
waste.

- It isn’t connected directly to power supply,
hence isn’t seen as « consuming ».

- However, it does have an environmental
impact represented by the consumption
of resources and energy, due to hardware
needs for its development and usage.

The goal of a LCA is to evaluate environmental
impacts of manufactured goods, services
and processes. But here, the question is:
which category does software belong to?

As an initial reaction, it seems obvious
that software has similarities with tangible
goods, like the ones produced by the
traditional industry, as they are materialized
by a set of computer data (source code /
executable code) that we can trade, own
and use to answer a specific need.

However, it is important to make the
difference between storage medium and
physical interfaces of software interaction
itself: software simply is a « state » of the
storage medium (made of a unique and
well-defined sequence of 0 and 1), a « state
» of the network moving data around, a set
of « states » of the screens displaying the

software graphical representation, etc. So,
should we consider software more as an
intangible good?

To answer these questions it is key to
distinct the software itself from the
service it offers. This way, we can consider
software as an intangible good, offering
one or more specific services (features
or content). As an intangible product,
its environmental impacts will result
from consumption of resources (human,
physical, tangible…) needed for the
implementation of different phases of its
life cycle: manufacturing/development,
operating phase, distribution, decline.

It is rather obvious software doesn’t
function by itself, but always in an
ecosystem of software it depends on,
starting with OS (exploitation system), or
with which it communicates and interacts.
With this method, measuring impacts
generated only by the studied software
during usage phase is pretty tough.

Software impact never goes without the
hardware and OS it works with: during a
LCA, identifying environmental impacts
linked to OS or hardware correctly isn’t
possible. However, these impacts can be
retrieved thanks to comparative LCAs,
which means by comparing LCA of two
very specific configurations. Let’s illustrate
with an example: Software A on Hardware
X with OS1 versus Software A on Hardware
X with OS2. Or for instance, conducting
sensitivity analyses would allow to asses
impact deltas linked to different hardware.

III Special features of software products

8© GREENSPECTOR

IT equipment doesn’t’ necessarily work
only for the studied software. Most of the
time other applications and software are
running at the same time, on the same
equipment, thus, are consuming resources.
As a consequence, the power consumed by
the equipment cannot be associated with
the studied software only.

In order to assign a software the energy
it consumes, the strategy implemented
as part of the Web Energy Archive (www.
webenergyarchive.com) research project
was to subtract the energy consumption
induced by the OS and specific services
such as antivirus (it is called consumption
in idle mode) to the whole consumption of
the equipment.

3.3 Software: what perimeter to consider?

3.3.1 Software keeps changing

One of the main issues we encounter
when we think of environmental
impact evaluation of a software is that
it evolves quite a lot from one version to
another (correction, features, etc) and
it can have a modular architecture, or
even work simultaneously on different
equipments.

Software breaks down in a variety of
versions and sub-versions with different
features.

We may be tempted to say it doesn’t lead
to any major issue as versions are spaced
out in time, but it rarely is the case.

When an official release of a well-identified
version is available, software can quickly
become the core subject of corrective
patches or complementary modules,
which may be very numerous and frequent.

It has been very common and has been
the trend in the last few years.

It is important to differentiate minor
evolutions of a software from major ones:

- Major evolutions carry new features,
or even a complete application
restructuration.

- Minor evolutions mainly carry bug
corrections or addition of minor features.

As talking about a « finished » version of a
software is tricky, we suggest limiting the
study to the « latest stable version that is
the most used ». No matter what version
you study, it will have to be mentionned
explicitly in the study assumptions.

The impact of corrective and/or operational
versions, whether minor or major, will be
taken into account only with a sensitivity
analysis.

This means we model the impact of a bug
correction or feature evolution by adding
resources (HR, paper consumption,
hardware…) during the manufacturing/
development phase or in a new specific
phase (maintenance).

9© GREENSPECTOR

Software itself can be broken down into
different modules we choose whether or
not to install, or it can offer the possibility
to install plugins and add-ons (like it is the
case for most internet browser).

We cannot model this concept of modularity
per se with a LCA, for a simple reason: it
would be tough, almost impossible, to
identify specific resources needed for the
development of each and each modules.

You’ll have to consider the most
standardized configuration possible, then
you’ll be able to run sensitivity analysis
in order to assess impacts of resources
needed to develop specific modules (HR,
hardware…).

3.3.2 Software is often modular

3.4 What is the life cycle of a software?

Most life cycles of products analyzed by
LCAs can be considered as composed of
the following six stages:

- Product development
- Raw material extraction
- Production and packaging process
- Logistics and distribution process
- Product use
- End of life (disassembling,
transportation, sorting, recycling, wastes).

Nonetheless, if this life cycle makes sense
for a basic tangible product, it isn’t really
suited for software:

-Indeed, as an « intangible good », software
doesn’t require any raw material extraction
directly.

The production phase doesn’t work like
a manufacturing process you repeat N
times to produce N copies of a product:
you should consider it more like a unique
stage creating a version of a software
theoretically reproducible and reusable
endlessly.

Upstream transportation and distribution

Regarding upstream transportation
(logistics), if the software is made of
different modules developped in other
sites, you should take into account, as
much as possible, the “sending part” from
others sites to the modules’ aggregation
site. In a first approach, these impacts
could be negligible, as they are more likely
to represent less than 5% of total impact.

If distribution to end-user is conducted
through a download on internet, this
download’s environmental impact should
be taken into account. If distribution is
done via a tangible support (DVD, USB
key…), production and transportation
of these supports should be taken into
calculation as well.

Software installation can be linked to the
use phase.
Maintenance can be considered as
production overcosts. A software’s end of
life seems non-existing, or at least without
any impact. We will see later how wrong
that statement is. We will have to integrate
the program removal process and the
data destruction or retrieval associated
with the uninstallation process.

Just like it is stated3, we can simplify a
software life cycle by keeping only 4 stages:
production, distribution to end-user,
actual use and end of life/reutilization/
recycling

3 Green Patterns – Reference guide in software eco-design written by Green Code Lab, 1st edition V1.0

10© GREENSPECTOR

Production Design and development
process is considered as a unique stage
allowing to produce the software. This
phase includes the whole software design
process:

- need analysis
- design,
- programming,
- test,
- stabilization,
- deployment.

- Resources associated with correctional
maintenance acts (bug fix) and functional
enrichments are to be included in this
stage

- Software is often composed of elements
such as frameworks, libraries, etc. In that
case, we can consider the production
of these components has a negligible
impact if we look at the amount of copies
(reutilizations) that are made.

We can simplify a software life
cycle

Distribution to end-user : Several scenarios
are possible, we’ll present briefly three of
them.

- Downloading: software and
documentation are distributed
electronically. The program issuer
(download server) perimeter has to be

taken into account, just like the recipient’s
(end user’s computer), as well as the
infrastructure used to send electronic
files (networks, routeur etc), by taking a
portion of the hardware manufacturing
and energy needed to download the
sotfware depending on used resources..

- Software and documentation are
packaged and sent in the mail, hence the
support have to be taken into account
(CD-ROM, DVD, USB key, documentation),
so as for packaging and mailing services
associated.

- User can get the license and the user
manual in a local shop or via mail and
download the software. The packaging
step (manufacturing & transportation) has
to be taken into account, the software
download too. In that particular case,
impacts due to users movements can be
rather high and become greater than the
other impacts. Previous LCAs, conducted
by the Orange Group on terminals,
mobiles, modem, CD-ROM, showed the
clients’ moves can vary a lot from each
other and be very impactful, particularly
if it is done by car (several kilogramms of
CO2).

The software utilization by the end-
user is initiated by the installation on its
hardware (initial operation) following
the download (distribution) for instance
and covers the whole software use stage
on the user’s suited hardware. Perimeter
includes:

- Hardware needed or required to use
the software. In this case, we consider the
portion of:

- hardware manufacturing (user’s
equipment, network access, server access),
- the energy used when the hardware
is on (user’s equipment and potentially
network access and server access),

11© GREENSPECTOR

which could automatically integrate the
consumption of required software;
- required software integrating its
own resource consumption (OS, virtual
machines…). We can isolate the resource
consumption of thoses mandatory
software by establishing a standard
value called “Idle” which is the resource
consumption of hardware and its
requirements, before any execution of the
analyzed software; this value can be split
in as many values as we want if we wish to
isolate OS from browser for instance.

- The software being assessed and
integrating its power consumption:

- data needed to use the software
or ones created by it and stored on the
application’s different resources;
- power consumption associated
with this data is integrated by default in
the equipment

For example, if we take a Web page, the
hardware and software requirements to
display the page are: a computer/tablet/
smartphone, an OS (Android, Windows,
iOS…), a browser (Firefox, Chrome, Edge,
Safari…) and potential plugins.

End of life / Reutilization / Recycling:

We assume that, at the end of life, a software
is erased or uninstalled on the user-side
and the editor-side. There are several things
to take into account for this step: the end
of life of support hardware and software-
generated data.

- End of life of support hardware: cf. § 3.5.

- Data end of life: we can uninstall the
software properly folllowing a procedure
deleting all setting files on the client’s
terminal. In this phase, you should also take
into consideration the software-generated

data created willingly, or not, by the user. In
that case, we may face different situations:

- the user does not wish to retrieve the
data he created;

- the user wants to get its data back in
order to use them with a similar tool and
a conversion process exists, this process
was included in the new tool during the
design and development phase;

- the tool doesn’t allow the retrieval and
data conversion process for a new use,
in that case we will have to estimate the
conversion impact for the user in that end
of life stage.

3.5 End of life: software-induced

The end of life stage of a software is
especially hard to apprehend in the life
cycle assessment, specifically for the two
following reasons:

Obsolescence as such doesn’t actually
exist for software. Indeed, theoretically
a software is endlessly usable, as long as
hardware exists to make it work. Software
doesn’t recognize wear and doesn’t break
down because it has become too old itself.
As a consequence, we cannot properly
predetermine a software lifetime duration,
as it is linked to its components degrading
throughout time. The only explanations to
software obsolescence are external to the
software itself:

Obsolescence as such doesn’t
actually exist for software. Indeed,
theoretically a software is endlessly

The end of life stage of a software can be
tough to apprehend and manage.

12© GREENSPECTOR

- user’s choice to delete it,
- maintenance policy of a version,
- obsolescence of hardware supporting the
software,
- obsolescence of other software interacting
with the software we analyze (exploitation
system, database…),
- disappearance of the user’s need
- etc.

A software doesn’t seem like it is
generating any physical waste in its end
of life stage.

Whenever we decide not to use it anymore
- or when we cannot use it - it is simply
deleted from the terminal on which it is
installed, without generating any physical
waste. In the worst case scenario, there are
remaining files uselessly occupying disk
space.

But in reality, if we have a closer look, we
can find:

- physical wastes (wastes from the design
and development stage - CD + package +
user guide in paper form if the software
was packaged - taken into consideration in
other stages of the analysis),

- and more specifically hardware-related
wastes (computer, smartphone, tablet,
network equipment…) generated from the
use of hardware, required to make the
software work.

But the question is: how does software
contribute to generating wastes? Well
simply with its direct or indirect impact on
hardware obsolescence.

- Replacement or software update
requiring new equipments:

For a similar user’s need, if the software goes
through a major update or if it is replaced
with another software, plus if this operation
requires additional physical resources
(more powerful machines, different
technologies), then we can consider older

hardware as software-induced waste.
This is a phenomenon of « hardware
obsolescence » caused by software
renewal: hence, software is reponsible
for the wastes. A mature software (with
no functional evolution) has no reason
to spearhead wastes… But what software
doesn’t evolve, right? It’ll be necessary to
watch consumption of resources required
by the new software versions.4 .

- Side effects of uninstallation on other
software:

You also need to pay attention to other
software as uninstallation can make
them obsolete: dependences can exist,
which could lead to a cascade effect of
obsolescence.

If a software participates in making an
equipment obsolete it means the software
update enriching the operational service
is consuming more and more resources,
until the support equipment isn’t
compatible anymore. In this case, both
the software and service are responsible
for wastes. A mature software (without
any operational evolution) shouldn’t
participate in generating wastes.

- Wrong uninstallation:

An uninstallation process that is badly
executed - or badly applied - can contribute
to obsolescence as well. Indeed, registry
keys are left out, temporary files too; if the
software modifies the system, it remains a
residual footprint which makes the system
heavier. If an editor decides not to maintain
a major software of an equipment such
as PC, then the terminal will become
obsolete and generate wastes. And the
software will be reposible.

4 SLI : an indicator to assess software durability,
Frédéric Bordage, http://www.greenit.fr/article/
logiciels/sli-un-indicateur-pour-evaluer-la-durabi-
lite-des-logiciels-4237

13© GREENSPECTOR

Aservice is provided by the use of
a software, relying on a terminal’s

tangible resources (computer, mobile,
tablet) which possibly need network
resources or remote IT equipment
resources (service platform). Software is a
constituent element of a service..

Because of that, environmental impact
assessment of a software will come out
different from a service one.

A software Life Cycle Assessment only
focuses on resources needed for software
development, as well as the tangible
resources’ share needed for it to function
properly.

On the other hand, a service Life Cycle
Assessment includes all resources needed
to make it possible (terminals, software,
networks, service platforms, servers…) and
will rely on these LCA elements.

As a consequence, in order to conduct a
website LCA, conducting a LCA of the whole
chain supporting the service is necessary:
servers, network and client terminal,
both for the hardware and software part
(server, client, network…). The impact of the
analyzed software (here one or more web
pages) on different hardware components
will be taken into account, particularly
those forming the system and allowing the
end user to access the web page(s).
When it comes to some service LCA,
the software impact on some hardware
could be very weak, thus not taken into
consideration. For instance, it is the case
for the website’s network part (to be

confirmed thanks to the software LCA of
network elements).

LCA results of the different systems
(equipment) will be used as data for the
service LCA. However, it will be necessary
to check that operating units of the
elements forming the service are coherent
(use time, data, allocations, etc).

Another term is that LCA must have been
conducted with the same exact set of
indicators, with the same software version,
with the same accuracy, the same “cut-
off” rules, and preferably conducted by the
same person.

IV What differentiates a software LCA from a service
LCA?

14© GREENSPECTOR

Defining the analyzed product’s
functional unit is a mandatory step

to LCA; as comparing two products’
environmental performances only makes
sense if the service in the end is the exact
same.

Functional unit represents a product’s
function quantification.

From this unit, it will be possible to compare
different products’ scenarios. Like any other
unit, it has to be very accurate, measurable
and additional. Without being so specific,
the functional unit should include a
functional component, a performance
criteria and a set duration.

Here are a few examples of functional units
for other types of product and industrial
processes5 :

- For paint: painting 1 sq m of wall with an
opacity of at least 0.98, measured with an
opacimeter, for 20 years.

- For a mobile phone: one year being
operational on a 3G network..
Software works differently because services
it offers are various and most of the time
pretty complex. A software usually owns a
whole bunch of features..

- For a given set of features, the amount
of possible application cases associated is
rather high.

A software may have different uses and
user types: a majority of user utilizing only
a couple of basic features, and few users
using advanced ones. As an example, Word
can be used as a Notepad, or as a macro
model, presentation tool, printing one etc.

In the context of a service like accessing a
web server from a terminal, you will have
to identify a functional unit (“consult the
homepage for 40s on a laptop”) and the
support architecture: :

 - 1 main server

 - 2 CDN servers

 - several network elements crossed

 on average

 - 1 box or company switch

 - 1 client terminal: laptop

However, when you will be trying to
define the functional unit, you will have
to pay attention to services offered by
the software, such as:

- Writing X pages of a document in a
word processor

- Writing and sending an email of x lines
to y recipients through a messaging
software

- Video player: read x minutes of video
of a certain given quality (resolution,
compression level)

-Web server: processing x HTTP
requests

-Database: handling x data Mo or
answering y requests

V Functional unit of a software

Introduction to Life Cycle Assessment (LCA),
External brief note : may 2005, ADEME.

15© GREENSPECTOR

This paragraph aims at explaining how
to set the study’s perimeter, to list the

required data and to get them.

There are two types of life cycle assessment:
attributional and consequential. The
attributional LCA6 describes physical flows
required and emanated for a product or
process; whereas, the consequential LCA
describes how coherent environmental
flows will vary, depending on decisions
that are made. This second type impacts
border definition.

We would use preferably the attributional
LCA, which objective is to assess
environmental impacts emanating from a
process/service. .

6.1 Scope definition of a LCA study

When conducting a Life Cycle Assessment,
and after defining the study goal and
functional unit, the next step is to determine
the study scope, and to do so you need
to list all basic processes involved in the
study of a “software” product. Describing
the system with a flux diagram (input and
output) mentioning the processes and their
relationships is rather useful. The energy
input and output should be considered
and treated just like any other LCA input/
output.

Scope definition is iterative; often, you’ll
need to go back on the scope to include or
exclude processes, either because specific
data isn’t available or because a process
must be included as it presents an impact
that needs to be more precisely identified.

Skipping some steps of the life cycle, the
process, input or output is possible only if
they don’t alter significantly the general
study conclusions in the end. These
decisions must be clearly stated, as well
as what they involve and why they were
skipped.

In terms of LCA study, we take into
account different cut-off criteria to pick
inputs to be included in an analysis, like:
masse, energy, environmental scope
etc. Similar cut-off criteria can also allow
you to identify which output it is best to
watch in the environment; for instance by
including final waste treatment processes.

Cut-off criteria are also established in a
way that it makes it possible to conduct
life cycle assessments in a fair timescale.
Indeed, it is counterproductive to allocate
a lot of time to search data for elements
which environmental impact is negligible.

6.2 Collecte des données

Data collection involves power
consumption measures (development,
tests, storing, hosting, usage…), the
identification of the electrical mix used
depending on the country, the quantity
of consumables (paper, ink cartridge…),
distances (deliveries, travels…), material
and electronic components identification
in used terminals, real physical
characteristics measure of elements
(masse, surface, development...), network
related consumptions etc.
Primary data must be retrieved from
developers. Secondary ones can be
used whenever direct measures aren’t
conductible.

VI System boundaries and data collection

6 Finnveden, G. et al. 2009. “Recent Developments in life cycle assessment”. Journal of Environmental Mana-
gement vol 91 p. 1-21

16© GREENSPECTOR

The Energy Star database, available online,
is a source of data appropriate to use for
desktop, laptops and servers. However, if
the device and settings aren’t the same, it
might not be totally reliable.

Regarding secondary data issued by the
LCA software, the geographical zone, the
creation date as well as the source of each
data used in the study must be provided.

It is possible to use LCA results for
machines (servers, computers…) if they were
conducted with the same LCA software
(impact indicator) and the same database
version (or else an update is required).

6.2.1 Production phase

Software libraries

When software libraries are developed
by third-parties, it is pretty complicated
to get primary data related to software
development. You will only be able to
calculate impacts of the parts developed
within the company.

Estimation techniques will be used for the
size and complexity of a software; it can
be the estimation of an effort in h.j for the
development, or the code size (amount of
code lines or Mo).

Tests and development

You have to take into account:

- The human resources in h.j needed
for software development and light
maintenance, revealed with the time

record associated to stages such as:
software design, development and tests
before it gets deployed.

- Development and test related
consumptions of energy (computers,
servers), but also broader energy fluxes
(energy, lighting, air-conditioning) of
software manufacturing or production
location. Computers used to develop
a software are considered as capital
equipment, thus they are out of scope.

- The amount of travels and distances
(car, train…) required for the application
development, the type of car used.

- Consumables used during the
development and test processes (like
paper, office supplies).

- Physical meetings and videoconferences.

In that case, a suitable method for
consumptions attribution is based on
the amount of h.j for each software
development and on the calculation of an
emission factor per employee to allocate
to development and test.

17© GREENSPECTOR

6.2.2 Distribution and installation stage

Distribution of the software can be
done either in the electronic way (with a
download on the internet) or via a physical
medium (DVD, USB).

It might also be a combination of the
two: distribution by physical medium to
the central system of a company, then
electronic distribution to individual users
in a firm. When a combination is used, you
should use a weighted average.

For an electronic distribution, you should
include:

- storing and hosting of software by servers
(including mirror ones)

- network use (WAX & LAN) for software
transfer and download

- computer/terminal use for a software
download by the end-user

For a physical diffusion, you should
include:

- raw material and media production
(DVD or CD)

- casing and packaging

- physical documents delivered with
software

- media transportation (including
storing, if applicable)

Regarding the software installation, you
should take into account: (the actual
installation stage should be included in
the usage stage, except if training sessions
is needed)

- the duration of computer/terminal
use by the end-user in order to download
the software;

- the power consumption required
for the software installation, plus the ad
hoc electrical mix;

- the use of network (data volume
in Mo or Go for instance) to transfer and
download the software;

- For the installation, we can consider
the software installation time on the
terminal on which it has been downloaded;

- The initial training in h.j, the power
consumption of the client’s terminal/
computer and a matching electrical mix.

For company software that is rather
complex (such as ERP systems), there is
a significant level of activity in this stage,
whereas it can only include software
physical delivery (or distribution) for “out-
of-the-box” software.

18© GREENSPECTOR

6.2.3 Use phase

Measurement of the energy consumption
of a software on use.

In order to do that, you need to have a use
scenario for the software(x hours a day),
to know the electrical mix of the country
of installation and to declare the type
of measure tool and the methodology
associated.

The energy related to the use of a
software can represent most of the energy
consumed by ICT hardware, which can be
truly affected by the software development.

During the LCA of an ICT service, measuring
the energy used by the hardware
necessarily involves the energy used by
the software; in that case, you don’t have
to assess separately the software energy
consumption. Nonetheless, in the case
several software are running at the same
time on a same terminal, you will have to
take into account only the consumption of
that specific software.

6.2.4 End of life (EOL) stage

• When a software gets distributed
via physical mediums, the emissions
associated with the EOL of those mediums
(CDrom) should be included.

• When hardware is used to make a
software work, it has to be included in the
event that the stopping of the software
makes it obsolete.

If, in order to extend a « service », the
installation of a more powerful software
version (major version) is required and it
involves furthermore tangible resources
(machines, technologies), then we can
consider older hardware as new waste.

As a consequence, it is necessary to
implement the rules related to WEEE
(Waste Electrical and Electronic
Equipment): reutilization or collection,
dismantling, sorting, recycling, landfill and
transportation associated.

IT managers handling equipment in EOL
stage and WEEE eco-organizations (or
local waste disposal department) picked
by firms will participate in information
collection.

Because of a lack of data, or depending on
the results previously obtained with other
product and service LCAs, the following
data can be considered out-of-scope:

• support services ((R&D / Capital Goods /
Sales & Marketing),
• client’s travel by car to go pick up its
software
• secondary and third packaging,
• upstream transportation of components,
• software that uninstallation of the
software targeted in the study make
obsolete if they are not created – or there
is no information available,
• registry keys left out and temporary files
(remaining residual resources) in the case
of a bad uninstallation..

In alignment with the GHG Protocol,
emissions caused by the manufacturing
of capital goods (buildings, machines etc)
can be excluded – in that case, computers
used to develop the software would be
considered “capital goods”.

19© GREENSPECTOR

6.2.5 Quality of data

The quality of data retrieved to form an
inventory must be assessed in order to
determine its relevance and reliability.

The method used relies on
recommendations from the guide Product
Environmental Footprint (PEF) guide
(European Commission, 2012).

A data quality indicator is calculated with
the following formula:

QD =

with:

MC, methodology coherence

AM, acquisition method,

C, completeness,

U, uncertainty,

DR, data representativeness,

T, timeliness

GC, Geographical Correlation

TC, Technological Correlation,

Qmin, weakest quality obtained.

Only the most impactful elements will be
assessed.

(6 + 4)

(MC + AM + C + U + DR + T + GC + TC + Qmin.4)

Data Quality rating Data Quality level
Excellent quality
Very good quality
Good quality
Acceptable quality
Poor quality

20© GREENSPECTOR

VII Life cycle impact assessment

The Life Cycle Impact Assessment
(LCIA) turns flux inventory into a series

of impacts very well identifiable due to
software and LCA database.

Similarly to the rest of the life cycle
assessment, impact evaluation is based on
a functional unit.

The life cycle impact assessment uses
a list of inflows as inputs (raw material,
transformed material, energies ect), as
well as some outflows (rejections, wastes,
emissions, etc) aggregated on the whole
system, which is being analyzed at every
single stage. These fluxes are aggregated
in impact categories to, in the end, provide
category indicators.

Ultimately, it is possible to reach a unique
environmental rating, even though it
involves to weight impact categories
between each other.

It exists several methods to conduct such
an assessment.

Issue-oriented methods

The chain of cause and effect for
environmental issues is rather rough.
Most of the time, we can notice primary
effects directly coming from analyzed
activities, such as CFC emissions; and
secondary effects which are basically the
consequences, like stratospheric ozone
depletion, leading to an increase in UV rays
reaching human’s level, hence developing
more cataract issues and cancers.

These methods are also known as « mid-
point » methods.

Damage-oriented methods

Unlike issue-oriented methods, damage-
oriented ones put an emphasis on
regrouping impacts according to results,
as deep as possible in the chain of cause
and effect. This is why these methods are
also called « end-point »..

Remarks

(note issued from normation):

For numerous products and services,
software-related emissions (in all
stages beside use) don’t represent
a big share compared to the overall
emissions of the system being
assessed, especially as emissions
due to software development are
amortized on the amount of software
copies that will be made. As a
consequence, it won’t be necessary to
conduct a detailed assessment of the
software life cycle.

However, if a software is being
custom-made with a smaller amount
of instance, it is recommended you
do a prior assessment of all stages,
so you can determine whether or
not a detailed analysis of emission is
needed.

21© GREENSPECTOR

VIII Indicators

It is crucial to determine impact indicator
(mid-point categories) and damage
categories that will be measured during an
analysis. This choice actually depends on
the objective set by the company, and also
on the availability of exploitable data.

Here below are a few examples of impact
indicators used in the software Simapro.

- GW (Global Warming):

This indicator evaluates the contribution to
global warming caused by the emission of
greenhouse gases. It is expressed in g eg
CO2.

- OD (Ozone Layer Depletion):

This indicator evaluates the contribution to
the depletion of stratospheric ozone layer
by atmospheric emissions. It is expressed
in g eg CFC11.

- PO (Photochemical Oxidation):

This indicator calculates the production
of ozone in the tropospheric layer via the
action of solar radiations on oxidizing gases.
It is expressed in g eg C2H4.

-AE (Aquatic Eutrophication):

This indicator calculates the eutrophication
(gain in nutrients) of oceans and lakes by
affluents. It is expressed in g eg PO4.

- AT (Aquatic Toxicity):

This indicator evaluates toxicity of water
by taking into account the authorized
top-level concentrations of effluents. It is
expressed in dm3.

Fig. : Scheme by IMPACT 2002+, linking the life
cycle inventory (LCI) and damage categories, via
mid-point categories.

For instance, damage categories (End
Point):
-Human health (DALY),
-Ecosystems quality (PDF.m².an),
-Climate change (kg CO2 Eq),
-Resource consumption (MJ primary
energy).

All these impacts can be analyzed
separately and, in the end, brought back
altogether in the form of a unique impact
unit such as « environmental footprint »
or « planet overshoot day », as it is usually
offered by LCA software.

Table: Standardization Factors for all four damage
categories for West Europe (Jolliet et al. 2003,
Humbert et al. 2005)

Damage Categories Standardization factors Units

Human Health

Quality of ecosystems

Climate
change

Resources

22© GREENSPECTOR

Flow indicator (example)

- ED (Energy Depletion):
This indicator calculates the energy
depletion caused by fuels (fossil, uranium
for nuclear power, wood, etc.) as well as
alternative sources (hydroelectricity, solar,
wind energy, wave and tide etc.).

The indicator also takes into account the
energy contained in materials (produced
during their combustion in the end of life
stage for instance). It is expressed in MJ.

- WD (Water Depletion):
This indicator evaluates the consumption
of used water, no matter its origin or quality
(potable, industrial, etc). It is expressed in
dm3.

Design indicators (example)

Design indicators allow to put the
emphasis partly on:

- the number of different material used
- product end-of-life indicators:

- % of reuse,
- % of recyclability,
- % of energy recovery,
- % of wastes.

For software, we identified impact
indicators and fluxes:

- « Climate change (CC for ILCD) » kg eq
CO2,

- « Aquatic eutrophication – Freshwater
(AEF for ILCD) » kg eq P,

- « Abiotic resource depletion (ARD for
ILCD) » kg eq Sb,

- « Respiratory inorganics (RI for ILCD) » kg
eq PM2.5,

- « Ionizing radiation – Human health
(IRHH for ILCD) » kg eq U235.

Fluxes:

- « Energy depletion » MJ

- « Water depletion » m3

23© GREENSPECTOR

Contributions to impacts and fluxes are
identifiable with a LCA software:

- impacts in phases allow to establish some
sort of hierarchy which varies depending on
the company’s concerns (CO2, freshwater
eutrophication…) and room for action;

- same thing inside the different stages
of the life cycle themselves, it is possible
to know if impacts are connected to the
software production or maintenance, to
travels of development teams, to materials
used in production, to storing or even
hardcopies printing…

Consistency check

This control aims at making sure the
results we get are compatible with the
scope of study initially defined. In case you
are comparing two different scenarios, it
is advised to demonstrate that, for each
scenario, the chosen hypotheses are
consistent with one another.

These differences between scenarios can
come from differences in data sources, data
precision, technological representation,
etc. Differences that are related to time,
geography, age of data and indicators also
have to be taken into account.

During the checking phase, used data have
to be compared to initial recommendations.
Differences have to be documented and
justified.

Uncertainty analysis

Its goal is to verify the uncertainty impact
of main data on the model results. This
is usually conducted with software tools,
using, for instance, the Monte-Carlo
technique.

Sensitivity analysis

The objective is to validate the reliability of
final results by determining their influence
on variations in hypotheses, source data
and methodology.

The sensitivity check can be done to
any element of the analysis: imputation,
exclusion criteria, system border, chosen
impact categories, standardization data,
etc.

IX Interpretation of the life cycle assessment

24© GREENSPECTOR

X Limitation of LCA

Even though life cycle assessment is a
global method allowing the evaluation of
environmental impacts, some limitations
have to be considered.

First off, it is only about potential impacts
- and not real ones. Plus, results are a lot
dependent on hypotheses initially chosen
(scope of study, functional unit, etc.)
and also on quality of data (availability,
confidentiality, complexity, etc).

Because of that, conducting such an
analysis requires a level of knowledge and
competences rather important in this
domain. Regarding the service or software
design, one of the factors limiting the LCA
is the volume of data needed to conduct
the study.

When developing a new service or
software, the life cycle assessment requires
quite a good and advanced knowledge
of the software or service, thus with fixed
settings, like technical choices, that will
then determine the impact of that same
new software or service.

There is indeed a risk with libraries we use
to develop an application as it is nearly
impossible to assess their impact on the
production and use stages.

And finally, as the life cycle assessment
focuses on environmental impact
evaluation, it is rather frequent that
recommendations coming from the
interpretations of the study results end
up conflicting with other interests, like
economic or social perspectives for
instance.

25© GREENSPECTOR

The goal of this part is to present the first
results coming from the assessment of
environmental impacts of the application
being analyzed and on which we applied
power consumption reduction measures.

This first software life cycle assessment
relies on the recommendation series
ISO14 040.

That way we considered the following steps
in the life cycle;

Manufacturing
- of equipment on which the application
was developed and tested
- of the analyzed application itself

Transportation
- of equipment from the manufacturing
location to the Orange plant, where the
application has been developed.
- of the analyzed application’s different
modules

The application use stage
- for convenience and simplification
reasons we installed on a same terminal
(Raspberry Pi) different instances of the SDS
software, which allows to model different
equipment supposed to communicate
with each other.

End of life
- of equipment used to develop the
application
- of the application.

By definition LCA is multicriteria, but for
simplification and clarity purpose on this
first study on software impacts, we will only
focus only on the impact of CO2 emission.

11.1.1 Functional unit

For this study, we suggest taking the
following functional unit :

« turn on 20 small equipment (alarm clock,
coffee machine, light, electronic shutter…)
20 times a day for a whole year »

Each solicitation lasts more or less
depending on the chosen software version:

- Test duration of non-optimized version
lasts: 78,5s.
- Test duration of optimized version is
shorter: 74,38s.

The goal of the study is to be able to
measure environmental impacts (power
consumption) caused by the SDS
application operation on the whole 20
equipment.

On a Raspberry Pi we install 20 SDS
application instances that we will solicit 20
times a day for a year (365 days).

11.1.2 Detailed life cycle stages

All calculations explained here-after can
be found in an Excel sheet (.xls). The main
objective of the upcoming paragraphs is
to briefly present the approach that was
implemented.

XI Case Study

26© GREENSPECTOR

11.1.2.1 Manufacturing stage

Application development and production
phase

The application was developed over a one
year and half period by a developer, so
about 300 person-days (1 person-year at
Orange = 200 person-days)

Power consumption of all development
computers and laptops was measured
over a period of two working days (11,75
kWh), this data was then compared to an
estimated calculation of the consumption
of those equipment. The results that came
out are very similar. These data allowed us
to get the power consumption needed to
develop the application: 1,7 MWh.

Manufacturing phase of development
PCs

For this stage we studied the developer’s
work environment:

- Development PC
UC : HP Z420 Workstation,
Screen : Samsung SyncMaster BX2240,

- Office desktop ,
Laptop DELL Latitude,
Screen Dell U2312HM,

- Netgear switch (to connect two
equipment on the Orange intranet
network).

The life time of a development PC was set
to five years, and a laptop is four.

For simplification purposes, the developer’s
whole environment wasn’t taken into
account: settings, saving, storing…

Environmental impacts (primary power
consumption) caused during the
production phase of those equipment
were provided by suppliers. When data
wasn’t available for the desired reference,
we considered the average of similar
equipment.

The share of the production phase
of equipment with global impacts
is proportional to the application
development duration (300 person-days).
Thus, when it comes to the development
PC, the actual life time in use is 1000 days
(5 years of 200 days/year).

The production stage contributes to 30%
of total impacts issued by the supplier.

Regarding laptop, if its lifetime is four years,
only 37% of production phase impacts
will be taken into account.

Overall, the production of PC and laptop
issues 394 k eq CO2.

This amount of energy can be converted
in equivalence with kg of CO2 by
considering the emission factor for
France (0,14927 Eq CO2 kg/kWh). Hence,
to develop the application, 263kg eq
CO2 have been diffused.

Along with this power consumption
linked to the application development,
you have to include the buildings share
(lighting, heating, AC…). The Orange Labs
building located in Rennes has been
hosting teams since the 70’s, plus that
location is also composed of a company
cafeteria. Consumptions in water, gas,
electricity include both service buildings
and the company restaurant. As it wasn’t
possible to extract data from the Orange
Lab building only, it has been decided to
refer to the consumption data provided by
ADEME (Agency for the Environment and
Energy Management) and CEREN (Centre
for Economic Studies and Research on
Energy) for an office building located in a
zone with an average climate. The Orange
Labs building is 14 456 m² big and usually
hosts 602 people, so it represents about
30,5m² per person. For CO2 emissions that
include all fluxes, the building share added
to a developer is 2240 kg eqCO2, and only
1520 kg eq CO2 if we just consider heating.

27© GREENSPECTOR

Production phase of the Rasberry Pi used
to model the five equipment

Just like development PC, for the Raspberry
Pi, we only consider the production share
that is proportional to the soliciting stage.

The Rasberry Pi is used 20 times a day for
19 seconds, for an overall lifetime of 7 years.

Over a five year period of application
operation, the use phase/production phase
ratio is 3.10-8. We can then deduct that
the production phase of the Raspberry Pi
equipment is negligible.

11.1.2.2 Upstream transportation

- Upstream transportation for the
application:

In the context of this study, no transportation
stage were to be considered for the
application.

- Transportation of development
equipment:

Just like we saw for the production phase,
only 30% of development PC’s impacts
and 37% of the laptop’s will be taken into
account for transportation.

Information on production location
and transportation means is available
on equipment suppliers’ websites.
Development PC is transported by boat
between Asia and Europe, whereas laptop
is transported via airfreight. These websites
also provide the weight of packaged goods
(in kg).

Emission factors (boat/truck/plane) are
from IEME (eq kg CO2 per kg.km of
transported good).

Distances are the following:

Camion Chine 2000 km
Bateau Chine - Europe 18000 km
Avion Chine - Europe 10000 km
Camion Europe - France 500 km

In the end, transportation of PC and laptop
emits 33kg eq CO2.

11.1.2.3 Use phase

Power consumption caused by the
Rasperberry Pi running during a session
(78,5s) for all twenty software instances
is 0,43 mWh. The session is repeated 20
times a day, every day of the year. Power
consumption for a year is 39 Wh, so an
emission of 5,9 g eq. CO2.

11.1.2.4 End of life of IT equipment

Les équipements de développement
sont supposés avoir une fin de vie de D3E
standard. Les calculs donnent 7,84 kg eq
C02.

11.1.2.5 Overview

Development equipment is supposed
to have a standard WEEE end-of-life.
Computations are 7,84 kg eq C02.

Production of PC + laptop

Distribution of PC + laptop

Code development (300 days)

End-of-life

Building with heating + other fluxes (light...)

Building with heating only

Phase of code usage (1 year)

The table here-after gathers every lines
connected to the production phase
(excluding the building).

Development phase (excl.buidling)

Buidling with heating + other fluxes (light...)

Buidling with only heating

Code usage phase (1 year)

28© GREENSPECTOR

After receiving GREENSPECTOR ‘s
recommendations which aims at optimizing
the application, five days were needed to
implement – in other words, a total of 305
days to develop this newer version of the
code.

CO2 emissions linked to the application
use phase represent 4,5 g eq. CO2 (for one
session). All impact figures increase as the
share of the application development rises,
going from 300 days to 305 days.

Here is the table of emissions for the
optimized version :

This table here-after presents all of the
lines connected to the code production
phase (excluding buidling):

11.1.3 Interpretation

The key points coming out of the LCA
results are the following.

- The prevalence of buildings’ footprint in
CO2 emissions – which are about ten times
more important than emissions related to
software development itself. One of the
first recommendations would be to stay in
a low energy building or, even better, one
with a positive energy surplus.

- Moreover, manufacturing of PC and
laptops represent a share that is slightly
higher than the one from the development
phase.

- Finally, CO2 emissions associated with
a 1-year-use stage are in reality rather
low if we compare with the ones caused
during the software development
phase. The ratio is even more
important if we include equipment
manufacturing. Let’s all remember that
these use phase emissions are from an
application working intermittently and
for short periods (78s).

This type of ratio in-between impacts
from manufacturing phase and ones
from the use phase represent an
optimized operation in terms of power
consumption. As soon as the use phase
is over, consumption goes void.

- The application considered may not
be ideal for the implementation of a
software eco-design operation. Indeed,
energy gains only represent 7% and
absolute values of CO2 emissions gain
per use (0,472 & 0,439g CO2) are very
weak too. Thus, calculating the number
of optimized software versions that are
to be deployed in order to compensate
code-optimization related overheads.
(5 extra developing days) brings us to
way higher values which don’t show
much relevance to the approach.

- These 7% gains are to be put in
perspective with the 40% gains Orange7
managed to get during the complete
refactoring of their application Every
Where, for which all eco-design axes
were implemented: architectural and
functional need. In that particular case,
the only way the 7% were obtained is
thanks to the replacement of the most
energy-consuming sequences, which
is pretty satisfying knowing that only
one third of recommendations were
actually implemented.

- The whole point of this operation is
to validate this approach and process,
as well as its potential to reduce
environmental impacts of software.

Production phase Production of PC + laptop

Distribution of PC + laptop

Code development (300 days)

End-of-life

Phase of code usage (1 year)

Building with heating only

Building with heating +
other fluxes (light...)

Development phase (excl.buidling)

Buidling with heating + other fluxes (light...)

Buidling with only heating

Code usage phase (1 year)

7 « Comparaison des couts d’implémentation entre les versions BEW V8 – V9 » Internal document to
Orange – confidential.

29© GREENSPECTOR

XII Conclusion: next steps

This document allowed to use a
methodological and theoretical process to
assess environmental impacts of a software.

For a first example of software application
in the connected objects world, we weren’t
able to neither assure the methodology
portability, nor validate hypotheses chosen
for the next explorations.

This methodology requires a bit more
testing to improve and actually set the base
for environmental impact measurement
of software with a standardized LCA
methodology.

Overall, these results are encouraging in
terms of work and studies realized by
Orange and GREENSPECTOR.

This document can be completed in the
context of future analyzes done by Orange
and GREENSPECTOR, as well as the Green
Code Lab national community for software
eco-design.

30© GREENSPECTOR

XIII Appendices

13.1 Reminder on LCA related norms

ISO norms:

− ISO 14040: LCA – Principles and
framework

− ISO 14044: LCA – Requirements and
guidelines

− ISO 14048: Data documentation
format

− ISO 14049 : Examples of application
of ISO 14041 to goal and scope definition
and inventory analysis

Complementary TIC norms:

− ITU-T SG5 - Q18 L Methodology:
Goods networks and services, part 1

− ETSI TS 103 199 V1.1.1 Life Cycle
Assessment (LCA) of ICT equipment,
networks and services; General
methodology and common requirements
− GeSI /Carbon Trust - ICT guidance
on WRI/WBSCD product and value chain
standards

− IEC TC 111 - IEC/TR 62725,
“Quantification methodology of greenhouse
gas emissions (CO2e) for electrical and
electronic products and systems”.

31© GREENSPECTOR

+33 (0) 9 51 44 55 79

contact@greenspector.com

Authors:

Marc VAUTIER - ORANGE

Elisabeth DECHENAUX - ORANGE

Thierry LEBOUCQ - GREENSPECTOR

Olivier PHILIPPOT – GREENSPCTOR

