

Werner Dirlewanger

 Measurement and Rating
 of
 Computer Systems Performance
 and of
 Software Efficiency

 An Introduction to the ISO/IEC 14756
 Method and a Guide to its Application

Bibliographic information published by Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available in the
Internet at http://dnb.ddb.de

ISBN-10: 3-89958-233-0
ISBN-13: 978-3-89958-233-8

2006, kassel university press GmbH, Kassel
www.upress.uni-kassel.de

The names of those products described in this book that are also
registered trademark have not been identified. It may not be assumed
that the absence of ® implies a free trademark. Further it may not
assumed that there is no patent or copyright protection.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by means - electrical,
mechanical, or otherwise - without the prior written permission of the
publisher.

Cover layout: Bettina Brand Grafikdesign, München
Printed by: Unidruckerei, University of Kassel
Printed in Germany

 1

Preface

The performance of a data processing system is one of its most significant properties. For
the user of such a system, a critical question is whether its performance will be adequate
for the intended application. It is therefore desirable to be able to measure the performance
of a data processing system. This question arises for all types and sizes of data processing
systems. However, the measurement is difficult because of differing types, sizes and the
high complexity of systems. A great variety of methods have been proposed and are being
used to describe and measure performance. Each method was developed for a specific data
processing system type and its use in a specific environment. Each has advantages and
disadvantages. An additional problem is that the results of the different methods are not
comparable.

To solve these problems ISO has developed a new method which is applicable for a wide
range of data processing system types and applications. It is presented in the International
Standard ISO/IEC 14756 "Information Technology - Measurement and rating of
performance of computer-based software systems". Although this standard describes the
method, it is not a tutorial. A textbook is desirable both for performance experts and
beginners, and academic users. The aim of this book is to supply this need. On the one
hand it introduces the latest techniques of computer performance measurement and of
measuring software (run time) efficiency contained in the standard. And on the other hand
it is a guide on how to apply the standard. However, you are recommended to buy the
original ISO standard and read it in parallel.

This book focuses on measurement. It is not intended to be a general or broad overview of
the wide field of all aspects of performance evaluation. For instance modelling, queuing
techniques and simulation are not explained (many good books are available for those
fields, for instance [ALLEN01], [BOLCH01], [JAIN01]). But the book discusses its own
field in depth: i.e. measurement of system performance and of software (run time)
efficiency. Additionally the author gives his experiences of many series of ISO-type
measurements, of data processing systems of all sizes, which he planned and performed as
a consultant or which have been performed in his laboratories.

This book is structured as follows: in each chapter the principles and methods are first
explained, then illustrated with examples. Additionally there are exercises using the simple
ISO-type measurement system DEMO, a simple demonstration software. These exercises
can be performed on any UNIX operating system. The book shows how to do this using
the well known and inexpensive LINUX. All needed software is included on a CD
supplied with the book and is published by the author under GNU license. The
demonstration software DEMO is not intended to be a tool for performing professional
measurements. It only enables the reader to realise all steps of the measurement procedure
and to observe all details as they occur. DEMO is deliberately not highly automated. It
works interactively. In its native mode each step of the measurement procedure has to be
manually controlled in order to show the trainee what happens.

The reader can use this book in different ways. For instance, if he is only interested in
seeing some of the basic ideas of system performance measurement of the ISO method,
then he should only read the corresponding chapters. But should he, for instance, be
interested in a deeper understanding of the method and its applications then it would be
mandatory to read all chapters thoroughly and to perform all exercises at the end of the

 2

chapters. Undoubtedly this will cause him to invest several hours of work, with possibly
increased resources. It is up to the reader to decide what to do.

There is an additional benefit in using the DEMO demonstration software. As it shows in
detail the principles of an ISO-type performance measurement tool, it helps industry and
science in implementing an ISO-type performance measurement system for professional
use. It must be stressed, however, that DEMO is only a demonstration tool on how an ISO-
type measurement system works. It is neither a reference implementation nor a tool for
professional measurement.

Although this book introduces the reader to modern performance measurement and to
ISO/IEC 14756, it is not intended to replace this standard. The principles and methods are
shown and explained, but for all normative details the reader must refer the original text of
the standard. Should the reader be interested in mastering the complete mathematical
presentation, this book can prepare him for more intensive study of ISO/IEC 14756.

The ISO standard uses conventional mathematical terminology and presentation. The
author was tempted to do so in his book. Although he prefers this style, he resisted the
temptation in order to enable less mathematically trained readers to follow the material.

ISO contributed an essential support to the realisation of this book by granting permission
to reproduce, in the Appendix of this book, the workload examples specified in Annex "F"
of the standard. I am most grateful for this permission.

Many individuals have stimulated and supported my work in preparing this book. I am
really indebted to all of them. My gratitude goes to Annette and Robin Calkin for their
many strenuous hours of proof reading and for their many recommendations to the text and
to my children Christine and Christian for designing the graphics. My thanks also go to
Reinhold Schlüpmann for his encouragement and editorial support in the development of
the ISO standard; to Sascha Gortzewitz and Piotr Szulc for checking and testing the ISO
method in my laboratories, and implementing, checking and testing the ISO workloads and
for their contributions to the initial development of the DEMO software; to Eberhard
Rudolph for writing Section 14.8 on applying the ISO method to function point
measurement; and to Wolfgang Eichelberger, Reinhold Grabau and Stefan Kucera for their
contributions when developing predecessors of the ISO method, putting them into practice
and building up experience before publishing the ISO standard.

To all these people I extend my sincerest thanks. But finally I would like to especially
thank my wife and children for their support and understanding when I was writing this
book. It is dedicated to them in recognition of their patience during my countless hours
absorbed in preparing the manuscript.

Werner Dirlewanger

 3

Contents

Preface .. 1

Contents .. 3

Chapter 1 General basics .. 11

1.1 Computer performance evaluation and benchmarking 11
1.2 System performance compared to component performance 12
1.3 ISO scope of system performance ... 12
1.4 Measurement of computer performance compared to prediction methods 14
1.5 What is rating of performance and why is it needed ? 14
1.6 Basic principles and philosophy of ISO/IEC 14756 15
1.7 Overview of ISO/IEC 14756 ... 16
1.8 Exercises .. 17

Chapter 2 The ISO workload .. 19

2.1 The view of the ISO workload ... 19
2.2 Basic ideas of the ISO workload description method 21
2.3 Explanation of the terms "activity, "activity type", "task" and "task type" 22
2.4 Explanation of the terms "chain" and "chain type" .. 23
2.5 Explanation of the timeliness function ... 24
2.6 The basic parameters of an ISO-type workload ... 25
2.7 The user behaviour parameters ... 26
 2.7.1 The activity type values ... 27
 2.7.2 The task type values ... 28
 2.7.3 List of timeliness function values .. 28
 2.7.4 List of chain type definitions ... 29
 2.7.5 The relative chain frequencies ... 29
 2.7.6 Preparation time mean values .. 31
 2.7.7 Preparation time standard deviation values ... 32
2.8 Application programs, their data and computational results 33
2.9 The advanced parameters of an ISO-type workload .. 33
 2.9.1 Computational results .. 33
 2.9.2 Precise working of the RTE ... 33
 2.9.3 Statistical significance ... 34
2.10 Short summary of the contents of an ISO workload .. 35
2.11 Exercises ... 35

Chapter 3 The measurement experiment .. 37

3.1 Principles of operation of the ISO-type user emulator (RTE) 37
3.2 Dynamic task generation versus pregenerated task lists 40
3.3 The three phases of a measurement run ... 42
3.4 The logfile (measurement result file) ... 43
3.5 Storing the computational results ... 44

 4

3.6 Some random generation methods .. 44
 3.6.1 Generation of random chain type numbers .. 44
 3.6.2 Generation of random preparation times ... 45
 3.6.3 A practical problem with finite random sequences 46
3.7 Exercises ... 46

Chapter 4 Validation of the measurement results .. 51

4.1 Validation of the computational results of the SUT .. 51
4.2 Validation of the correctness of the working of the RTE 52
 4.2.1 Three criteria ... 52
 4.2.2 The first criterion: Checking the relative chain frequencies 52
 4.2.3 The second criterion: Checking the preparation mean times 53

4.2.4 The third criterion: Checking the standard deviations of the
 preparation times .. 54

 4.2.5 Remarks .. 55
4.3 Checking the statistical significance of the measurement results 55
 4.3.1 Rationale for this check ... 55
 4.3.2 The test .. 56
 4.3.3 Application of the sequential test .. 57
 4.3.4 Fast computation of mean value and variance .. 58
4.4 Summary of the validation procedure .. 59
4.5 Exercises .. 61

Chapter 5 Computing the ISO performance values from the

measurement result file (logfile) ... 63

5.1 Overview of the ISO performance terms ... 63
5.2 The "total throughput vector" B ... 63
5.3 The "mean execution time vector" TME ... 64
5.4 The "timely throughput vector" E .. 64
 5.4.1 The principle of E .. 64
 5.4.2 Computing e(j) .. 65
 5.4.3 The "timely throughput vector" E ... 67
5.5 Exercises ... 67

Chapter 6 The Urn Method .. 69

6.1 General ... 69
6.2 Introduction to concept of individual rating intervals .. 69
 6.2.1 Defining the individual rating intervals ... 69
 6.2.2 Modifying the computation of performance values 70
 6.2.2.1 Computation of B (total throughput) .. 70
 6.2.2.2 Computation of TME (mean execution time) 71
 6.2.2.3 Computation of E (timely throughput) 71
 6.2.3 Modifying the definition of the end of the SR .. 72
 6.2.4 Overlapping of the individual RIs ... 72

 5

6.3 Explaining the concept of "urns" ... 72
 6.3.1 Toleration of the Urn Method by ISO/IEC 14756 72
 6.3.2 The urns ... 73
 6.3.2.1 Generating chain sequences ... 73
 6.3.2.2 Generating preparation time sequences 73
 6.3.3 Generation of a set of preparation time values for filling a

 preparation time urn ... 74
6.4 Experiences from applying the Urn Method ... 75
6.5 Formal and detailed description of the modifications

for computing the performance values ... 76
 6.5.1 Total throughput vector B .. 76

6.5.2 Mean execution time vector TME ... 76
6.5.3 Timely throughput vector E ... 77
6.5.4 Explanations ... 77

6.6 Exercises ... 78

Chapter 7 Rating the measured performance values .. 79

7.1 The principle of the ISO rating ... 79
7.2 The ISO theoretical reference machine .. 79
7.3 Computation of the reference performance values ... 80
 7.3.1 Computation of TRef ... 80
 7.3.2 Computation of BRef ... 81
7.4 Throughput rating ... 83
7.5 Rating the mean execution times .. 83
7.6 Timeliness rating .. 84
7.7 Overall rating .. 85
 7.7.1 General ISO rule of rating ... 85
 7.7.2 Extended ISO rating rule ... 85
7.8 Exercises ... 86

Chapter 8 The performance measure Nmax .. 87

8.1 Maximum number of timely served users (Nmax) ... 87
8.2 Incrementing the number of users .. 87
8.3 Measurement series .. 88
8.4 Acceptable tolerances of Nmax .. 89
8.5 Experiences from various measurement series .. 89
8.6 Exercises .. 92

 6

Chapter 9 Summary of the ISO system performance measurement
 method .. 95

9.1 The steps of an ISO-type measurement run ... 95
 9.1.1 Step 1: Specification of the workload ... 96
 9.1.2 Step 2: Installation of the applications on the SUT 96
 9.1.3 Step 3: Connecting the SUT to the RTE .. 96
 9.1.4 Step 4: Loading the RTE with the WPS .. 96
 9.1.5 Step 5: The measurement run .. 96
 9.1.5.1 Basic form of measurement with common rating intervals 96
 9.1.5.2 Measurement with individual rating intervals 97
 9.1.6 Step 6: Checking the correct working of the SUT 98
 9.1.7 Step 7: Checking the correct working of the RTE 98
 9.1.8 Step 8: Checking the statistical significance and the RI overlap 98
 9.1.9 Step 9: Calculating the performance values ... 98
 9.1.10 Step 10: Calculating the rating values .. 100

9.2 Computing the measurement results ... 100
 9.2.1 Calculation of the performance values .. 100
 9.2.2 Calculation of the rating values ... 101
9.3 The measurement report ... 102

9.3.1 Principles ... 102
 9.3.1.1 Completeness .. 102
 9.3.1.2 Detailed report .. 102
 9.1.3.3 Clarity ... 102
 9.1.3.4 Data formats ... 102
 9.3.1.5 The storage medium ... 103
 9.3.1.6 Reproducibility ... 103
9.3.2 Suggested contents of the measurement report 103

9.4 Recommendation for the documentation of a measurement run 105
 9.4.1 Measurement operator's protocol ... 105
 9.4.2 Archiving the measurement files .. 106
 9.4.3 Safekeeping period ... 106
9.5 Reproducibility of measurement results .. 107
9.6 Exercises .. 107

Chapter 10 Measurement of software (run time) efficiency 109

10.1 A hierarchical model for information processing systems 109
10.2 The reference environment and the term run time efficiency 110
10.3 The measurement procedure and measures of software efficiency 110
 10.3.1 The measurement procedure .. 110
 10.3.2 Run time efficiency terms related to task types 111

10.3.3 A software run time efficiency term related to the performance
 measure Nmax .. 113
10.3.4 Comparison of the two methods ... 113

 7

10.4 Examples .. 114
 10.4.1 Example 1: Application software efficiency ... 114
 10.4.1.1 The measurement environment .. 114
 10.4.1.2 The task-oriented software efficiency values 114
 10.4.1.3 The Nmax oriented software efficiency value 116
 10.4.2 Example 2: System software efficiency .. 116
 10.4.2.1 The measurement environment ... 117
 10.4.2.2 The task-oriented software efficiency values 117
 10.4.2.3 The Nmax oriented software efficiency value 119
10.5 Exercises .. 120

Chapter 11 The ISO workloads .. 123

11.1 Purpose of the workloads and format .. 123
11.2 The Simple Workloads .. 127
 11.2.1 General .. 127
 11.2.2 SIMPLOAD1 .. 127
 11.2.3 SIMPLOAD2 .. 127
 11.2.4 SIMPLOAD3 .. 128
11.3 The Computer Centre Workloads ... 128
 11.3.1 General ... 128
 11.3.2 COMPCENTER1 ... 128
 11.3.3 COMPCENTER2 ... 128
 11.3.4 COMPCENTER3 ... 129
11.4 Migration of ISO workloads to other operating systems 129
11.5 Important details for ISO workload migration .. 130
 11.5.1 Workload COMPCENTER1 .. 130
 11.5.1.1 Introduction ... 130
 11.5.1.2 The logical steps of the OSCPs of COMPCENTER1 131
 11.5.1.3 Some explanations ... 132
 11.5.2 Workload COMPCENTER2 ... 133
 11.5.2.1 Introduction .. 133
 11.5.2.2 The logical steps of the OSCPs of COMPCENTER2 134
 11.5.2.3 Some explanations ... 134
 11.5.3 Workload COMPCENTER3 .. 135
 11.5.3.1 Introduction ... 135
 11.5.3.2 The logical steps of the OSCPs of COMPCENTER3 135
 11.5.3.3 Installation of the workload COMPCENTER3 on the SUT 135

11.5.4 Migration examples of ISO workloads ... 135
11.6 Exercises .. 136

Chapter 12 Creating an individual ISO-type workload 137

12.1 Activity types and their representatives .. 137
12.2 Timeliness functions ... 137
12.3 Task types ... 138
12.4 Chain types .. 138
12.5 Chain probabilities and user types ... 139
12.6 Preparation times ("think-times") .. 140

 8

12.7 The WPS .. 140
 12.7.1 Recording the values of the WPS in a text file 140
 12.7.2 Recursive improvement of the WPS ... 141
12.8 The application software .. 142
12.9 The advanced parameters ... 142
12.10 Preparation ... 142
12.11 Migration of an individual workload to a different operating system 142
12.12 Exercises ... 143

Chapter 13 Organisation and management of an ISO-type measurement project ..145

13.1 Deciding on the goals of the measurement project ... 145

13.1.1 List of performance measurements goals ... 145
13.1.2 List of software run-time efficiency goals .. 146

13.2 Defining the responsibilities .. 147
13.3 Assessing the costs of the project .. 147
13.4 The project schedule .. 148
13.5 Making the workload available .. 148
13.6 Making the SUT operational and tuning it .. 148
13.7 Choosing an ISO-type RTE having sufficient performance 149
13.8 Performing the measurement ... 149
13.9 Computation of the performance values and rating values 150
13.10 Audit .. 150

Chapter 14 Miscellaneous aspects .. 151

14.1 Measurement using a real workload .. 151
14.2 Measurement using automated sample users .. 151
14.3 Measuring single-user systems .. 152
14.4 Hidden batch jobs in online transaction processing ... 153
14.5 A distributed RTE .. 154
14.6 Life cycle of ISO-type workloads ... 154
 14.6.1 Workload definition and documentation .. 154
 14.6.2 The RTE .. 154
 14.6.3 Type, architecture, manufacturer of the SUT ... 155
 14.6.4 Power of the SUT ... 155
 14.6.5 Applications contained in the workload ... 155
 14.6.6 Final remarks .. 155
14.7 Reliability aspects .. 156
14.8 Conversion of non ISO-type workloads to the ISO data model 156
 14.8.1 Candidates for conversion .. 156
 14.8.2 The conversion procedure .. 156
 14.8.3 Examples of conversions and sketches of some individual workloads 157
 14.8.3.1 The classic non-multiprogramming batch benchmark 157
 14.8.3.2 The classic multiprogramming batch benchmark 160
 14.8.3.3 The "Debit-Credit-Test" for OLTP systems 161
 14.8.3.4 The SPECweb99 test for internet servers 166
 14.8.3.5 The KS-Web workload for intranet servers 167
 14.8.3.6 The Kassel data warehouse workload 167
 14.8.3.7 An ERP workload .. 167

 9

14.9 Example structure of an ISO-type measurement system 169
 14.9.1 The example structure .. 169
 14.9.2 Short descriptions of the modules .. 171
 14.9.3 Some comments on the actual implementation of DEMO 173
14.10 Applicability of the ISO method for measuring component performance 175
14.11 Short comparison of some other methods with the ISO method 176

14.11.1 Incomplete list of commonly used system performance
 measurement systems .. 176

 14.11.2 Short comparison .. 178

14.12 Applying ISO/IEC 14756 to Function Point Measurement 179
 (written by Eberhard Rudolph)
 14.12.1 Overview .. 179
 14.12.2 Activated Function Points (AFP) ... 179
 14.12.2.1 Deriving AFP ... 180
 14.12.2.2 AFP Example ... 180
 14.12.3 Using AFP with ISO/IEC 14756 .. 180
 14.12.3.1 SAP-R/2 measurement ... 181

14.12.4 Limitations ... 183
14.12.5 Opportunities .. 183

Appendix A: CD as a part of the book .. 185

• ISO/IEC original workloads
• Supplement to ISO/IEC 14756 (logical steps of OSCPs)
• Two ISO workloads converted to LINUX
• Sketch of an ISO-workload converted to NT4.0
• Sketches of ISO-type individual workloads
 (ERP, ExternalDWH, KS-Web, Mainframes, Web99)
• The measurement System DEMO (software and manual)
• Detailed documentation of a measurement using DEMO
• Solutions of exercises
• Files of the exercises

References ... 187

Abbreviations .. 189

Symbols .. 191

Index ... 199

 10

 11

1 General basics

This book introduces the modern principles of computer performance measurement and of
measuring software run time efficiency. It refers especially to the method defined in the
ISO/IEC 14756, see [ISO14756], and it is a guide of how to apply this standard. Finally it
helps programmers when designing and implementing software tools for measurements.

Note: The author makes no warranty of any kind with regard to the material of this book
and shall not be liable for defects contained herein or for incidental or consequential
damages with the use of this material, either expressed or implied.

1.1 Computer performance evaluation and Benchmarking

What is "performance" ? We used to say: our computer has a high performance. In more
detail one could say: it is fast and reliable; it forgets anything; it makes no errors; it is
always available for work; it can do many different tasks; it is never tired. Looking further
at these statements we find that the characteristics of a computer system can be divided
into three classes.

 First class: This class describes what the computer is able to do.
 It is the set of activities, the correctness of operation and of the
 computed results and, additionally, user friendliness (ergonomics).

 Second class: This class describes how stable and consistent the
 computer is in its operation. It refers to the reliability of operation
 in the widest sense.

 Third class: This class refers to the speed of operation. One aspect
 is the speed of executing the tasks, i.e. the time for delivery of the
 task results. Another aspect is the number of tasks which can be
 executed in a given time.

The classification assumes that a computer system is not restricted to a single-user stand-
alone machine, such as a historical personal computer. Much more it is a general
information processing system (IP system) including multi-user, multi-processor, or
networking architectures.

The third class cited above means computer performance in the proper sense, i. e. the speed
of operation. This book focuses on this meaning of performance.

What is performance evaluation ? This activity involves all evaluation methods of
performance of data processing systems where performance is expressed by numbers and
not only by words like high or low. Additionally evaluation can include the assessment of
how good the performance satisfies the user requirements.

This book focuses on numerical performance values, determined by measurement and their
assessment. Assessment also results in numerical values.

What is benchmarking ? The word benchmark is taken from the marks showing measures
like feet or inches on the work bench of former craftsmen. In the data processing field

 12

several principles are in use for performing an evaluation. Some of them use a model of the
IP system. Another principle is to investigate the real IP system by loading it with concrete
applications, programs and data. Every method of determination performance values in
such an experiment with the real system under test is benchmarking. This book is
concerned with benchmarking and focuses on the ISO method.

1.2 System performance compared to component performance

The obvious way for characterising the performance of an IP system is simple. First decide
which is the most significant component of the system, for instance the central processing
unit (CPU). Then define a performance term, for instance the number of executed
instructions per time unit, or a set of performance terms. Determine the values of this
performance terms and take it (or them) as the performance of the IP system. This is the
principle of "component performance".

This way may have been appropriate in earlier times when the IP systems had been simple
single-user type machines having for instance, no multiprogramming features, no networks
and only one central processor. In contrast with these early computers a present day IP
system is much more complex. It is no longer sufficient to describe its performance by
values of its most important hardware component. The IP system has to be seen in its
entirety. Suitable performance terms have to be defined with regard to it. This consists of
all system and network components producing the term "system performance". An
important practical experience is that it is usually not possible to compute the system
performance values from the component performance values. Therefore a separate method
for determinating the system performance is needed. This book focuses on system
performance and not on component performance.

Note: The component performance values and the system performance values often are
named "external performance values". Contrary to these terms are the "internal values" as,
for instance, the CPU utilisation, the storage utilisation, the utilisation of data busses, the
length of job queues and the multiprogramming factor. In the past, those internal values
were often used for performance values. They are no longer suitable. They only describe
internal load situations of IP system components. In contrast to the external values they do
not characterise the speed of operation. Internal values are not used in the ISO method and
are not considered in this book. ■

1.3 ISO scope of system performance

The method defined in ISO/IEC 14756 [ISO14756] follows strictly the idea of system
performance as described above. The system is the set of all co-operating hardware,
software and network components. This set is regarded as a black box, which is connected
via the set of its interfaces to its users (see Fig. 1-1). The users are typically humans, but
some of them can be machines which submit tasks to the system via an interface.

 13

Fig. 1-1 The general IP system and its user entirety

1.4 Measurement of computer performance compared to
 prediction methods

The field of computer performance evaluation has the three subfields measurement,
simulation and modelling.

Measurement means carrying out a real experiment with the real IP system operating in
real time with real users. A monitoring feature records all necessary data during the
experiment. Performance values are computed from the recorded data.

For simulation a mostly simplified functional model of the IP system and its users is
developed. A computer program is then written which runs the model. This program may
run in slow motion, in real time or time-lapse mode. It does not matter which one of these
three modes is used. All necessary data during this simulated run are recorded by a
software monitor. Performance values are computed from the recorded data.

For modelling a very simplified functional model of the IP system and its users is
developed. From this a mathematical model is derived by means of queuing theory. This
model can be analysed by solving the so-called state equations merely numerically. But
sometimes also the explicit formulae of the interesting performance terms are found. Then
the performance values can be computed by use of the formulae.

In contrast to this in a measurement the real IP system is investigated and tested.
Simulation and modelling use only models of the system under test. Therefore the last two
methods deliver performance values of models. These are estimated and not measured

User Interface

Server

General
IP System

user

useruser user

user

user

user

user

user

user

 14

values. Consequently simulation and modelling deliver only predictions of performance
values. This book is not concerned with prediction methods. It focuses on real
measurement (as represented by the ISO method).

1.5 What is rating of performance and why is it needed ?

The results of a performance determination, independent of whether it is done by a
measurement method or by a prediction method, are performance values. They are values
of physical properties of the IP system under test (SUT), i.e. physical values. They are not
information about a more far-reaching aspect of using data processing systems. This is the
question if a regarded IP system fulfils the performance requirements of its user entirety.

The requirements of the user entirety are primarily non numeric values such as "poor",
"sufficient" or "excessive". We have to define which ranges of performance values
correspond to each of these three non numeric values. I.e. we have to relate the non
numeric values to the scale of the performance values. Entering the performance values of
the SUT into this scale delivers the rating result, for instance "the performance is
sufficient". This is shown in Fig. 1-2 .

Fig. 1-2 Rating of performance values

The ISO method (which is the focus of this book) contains a comfortable
rating procedure. It is explained further in chapter 7.

Measured
value

Numeric scale of
measured values

poor

suffient

excessive

Non-numeric scale of
user requirements

 15

1.6 Basic principles and philosophy of ISO/IEC 14756

It is not the goal of this section to describe in detail all the ideas of ISO/IEC 14756. Only a
selection of the more interesting principles is listed below.

1. ISO/IEC 14756 deals with system performance evaluation as defined in Section 1.2 and
not with component performance. (As it will be shown in Section 14.10 a slightly modified
method can be applied to component performance evaluation.)

2. ISO/IEC 14756 defines a measurement method but not a prediction method. (For
"measurement" and "prediction" see Section 1.4).

3. ISO/IEC 14756 is more than a "benchmark". It is a set of co-ordinated and co-operating
methods. The standard firstly defines the performance term for system performance;
secondly it describes a method for defining workloads (workload data model); thirdly it
defines a method for measuring the data processing performance of a defined IP system
using a workload which is constructed according to the ISO workload definition; fourthly
it defines a method for rating the measured performance. (For "rating" compare
Section 1.5).

4. There is exactly one universal data model for defining workloads. It is the same for all
possible workloads.

5. The ISO method does not represent a monolithic benchmark. Contrary to monolithic
benchmarks the measurement method is isolated from the workload. Its terms and
performance measures are the same for all workloads and tests.

6. Applying a defined workload, described according to the ISO method, and carrying out
the measurement and the rating procedure, according to ISO, realises a benchmark. That
means that an unlimited number of ISO benchmarks can exist as anyone can define an
individual ISO-type workload.

7. The SUT is seen as a black box. Therefore types, operating systems, architecture etc. of
the SUTs can be different. Nevertheless the measured performance values are objective
and can be compared without difficulties. (Note: This could imply that the performance of
a tiny old fashioned workstation or a personal computer can be compared to that of a huge
data processing system or a computer network. This comparison is objective with respect
to the used workload.)

8. The users in an ISO measurement are simulated by a simulator (remote terminal
emulator, RTE) which is not part of the SUT. It is external. The principles of operation of
this RTE are described and defined in detail in the ISO standard. This produces
measurements that can be reproduced repeatedly and independent of the personnel carrying
out the measurement.

9. The workload is input to the RTE which is table driven. Therefore one implementation
of the RTE is in principle sufficient for all workloads. In practice typically one ISO type
RTE is sufficient for a wide class of workloads. Only a few modifications are needed for
other classes.

 16

10. The ISO workloads are of the "ready for run" type. They realise no "high level
benchmarks". This implies, compared to high level benchmarks (the application programs
of which are detailed specified but not programmed), less work for preparing a
measurement. In the case of the ISO-type workload being already adapted to the SUT
operating system type the amount of work is in fact less.

11. There are strong verification rules for checking the technical correctness of a
measurement run. Check criteria are specified for the correctness of the work of the RTE,
for the correctness of the work of the SUT and for the statistical significance of the
measurement results. Note: ISO/IEC 14756 is strictly technical and may not include legal
aspects. Therefore no auditing is included and no pricing is included, which means that the
ISO/IEC 14756 defines no rules for non-technical aspects, such as cost/performance
values.

12. The response time requirements of the user entirety are a mandatory part of the
workload. A good way of defining these requirements is given in the standard. It is the
basis for realising the rating procedure of the performance values. It enables the
computation of the performance values required by the user entity and the rating of the
SUT as "poor", "sufficient" etc.

13. As the ISO standard is a principle for measurement of system performance it is also
possible to measure the run time efficiency of software (see Chapter 10). This aspect is
also described in the standard.

1.7 Overview of ISO/IEC 14756

The title of the standard "Measurement and rating of performance of computer-based
software systems" is a little misleading. The author of this book feels that a more suitable
title would be "Measurement and rating of performance of information processing systems
and of software run time efficiency".

ISO/IEC (see [ISO14756]) consists of 50 pages text and a CD. The text consists of a short
foreword and introduction, three sections, four normative annexes and two informative
annexes. The CD contains the annexes "D" (programs) and "E" (workload examples) in
machine readable format. However the 50 pages of text are also on the CD, in "pdf
format", together with some small files containing copyright information and a file on how
to unpack compressed files.

The standard is not available free of charge. For reproduction or utilisation apply to the
publisher, ISO/IEC Copyright Office, Case Postale 56, CH 1211, Genève 20, Switzerland.
Permission has been granted by ISO to quote or reproduce parts of the standard in this
book.

Section 1 of the standard contains five paragraphs describing the scope of the standard,
conformance, normative references, definitions and abbreviations and symbols.

Section 2 and Section 3 give the impression of having very different contents. But they are
to some extent similar. Section 2 explains in four paragraphs the principles of measurement
and rating and is to some extent an introduction to the methods used. The 6 paragraphs of
Section 3 treat these methods in detail.

 17

There are four normative annexes. "Annex A" specifies the principles of the RTE in detail.
It is the basis for programming the kernel of an ISO-type RTE. "Annex B" summarises
those mathematical formulae which are for simplicity not printed in the main part. "Annex
C" specifies the format of the workload description. The short "Annex D" lists all
mandatory data set entries of the logfile which have to be recorded during a measurement.

Additionally are there two non normative annexes: "E" and "F". "Annex E" contains
programs. These programs are examples of how to implement some formulae and
algorithms of the ISO method, which are perhaps a little too sophisticated. It may not be
obvious how to program them. The programs are intended to be a help for programmers
when implementing an ISO-type measurement system, but they do not realise a complete
measurement system.

Note: A complete ISO-type measurement system is the DEMO system. It is found on the
CD which is part of this book. The structure of a complete ISO type measurement system
is explained in Section 14.9 . ■

Annex "F" contains six ISO-type workloads. In the standard they are declared to be
examples. Although these six workloads are not normative, at least three of them (the so-
called computer centre workloads) have proved to be suitable for professional performance
evaluation. These three workloads are nearly identical to those workloads which are parts
of the National German Standard DIN 66273 (see [DIN01]).

Measuring software (run time) efficiency is only briefly described in subparagraph "8.2" of
ISO/IEC 14756. In comparison with the extensive work of defining the system
performance measurement, the principle of software efficiency measurement is almost
simple (see Chapter 10 of this book).

1.8 Exercises

Exercise 1: Making available a demonstration test bed

The ISO method cannot be performed manually. It needs a computer-aided tool, which is
the RTE, and a suitable SUT.

Part 1
You need two Pentium compatible computers, each running a LINUX operating system.
One is used as the platform of the RTE, the other for the SUT. These two machines have to
be connected by an Ethernet line with a speed of at least 10 kbits/second. The RTE
machine should have a CPU with a speed of at least 500 Mhz, and be significantly faster
than the SUT machine.

Part 2
Create in the RTE a user named "operator" and in the SUT a number users (for instance
25) named "user1", "user2",..... . Make sure that the "operator" can access via the network
all users of the SUT with the UNIX commands "telnet", "ftp" and "rsh".

 18

Exercise 2: Installing the RTE software DEMO

This book includes a complete ISO-type performance measurement system: the DEMO.
This software is available under GNU License and is contained on the CD-ROM as part of
this book. The DEMO is not a professional system. See Section 14.9.3 for its limitations.
But it is suitable for learning and teaching. Install DEMO on the RTE machine according
to the instructions on the CD-ROM.

Remark: Check if your computer uses a LINUX operating system release needed by
DEMO (see file CD/DEMO-20/release.txt). If not, a few alterations will be necessary to
DEMO.

Exercise 3: Installing the system software components on the SUT

Compilers (including those for C, FORTRAN77, COBOL ANS85) have to be installed and
also the editor "ed". They are needed for running the ISO workload examples in the
following chapters of this book. For economy you are recommended to use low cost
software (e. g. free or GNU licensed), which is suitable for running the workloads.

Exercise 4: Documentation of the test bed configuration

Write down the documentation of the hardware and software of the test bed.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section1-8.pdf .

 19

2 The ISO workload

2.1 The view of the ISO workload

The SUT, naturally, remains idle if there are no demands on any active data processing
tasks. It comes into operation only if users become active. Then subsequently it "is
workload on the system". But what is "workload" ? Looking to the literature shows many
meanings of workload. They have a strong dependence of the view. There are three classes
of views of workload.

- The internal system view
The workload is described by a set of terms, as for instance
 ● CPU utilisation
 ● average storage usage
 ● I/O rate
 ● length of queues
The point of view is located in the system (see Fig. 2-1). How do we compute these values
from a defined user community ? This attempt fails in praxis.

Fig. 2-1 The system internal view of workload

- The user interface view
The workload is described by terms like
 ● rate of interactive commands
 ● rate of submitted batch tasks
 ● rate of OLTP tasks
 (OLTP = online transaction processing)
The point of view is located at the interface between users and the system
(see Fig. 2-2). How do we compute these values from a defined user community ?

Component utilisation
values

IP system

.
.
.
.
.
.
.
.
.
.

users

 20

Fig. 2-2 The user interface view of workload

Among others there is the problem of "feedback" as follows. Faster users mean shorter
think times. Slower users mean longer think times. Regarding a defined SUT the
throughput increases or slows down when the users are faster or slower. The response
times of the SUT increase or decrease when the users work faster or slower. All throughput
values (as quoted above) depend on the users. The situation is analogous to economics.
Sales increase if customers place their orders promptly; they decrease if customers delay
placing their orders. The feedback is a severe problem of the interface oriented workload
view. The computation of this type of workload from a defined user community could be
successful by setting rough estimates (including many assumptions on the time behaviour
of the SUT). But in general it seems to be unsolvable.

- The user-oriented view
In this view the workload is the set of all users and their application programs and data (see
Fig 2-3). This workload definition is independent of the SUT properties. The SUT has no
influence on the workload terms. The problem how to compute the values of the workload
does not exist. The values of the workload terms are directly determined by the user
community. The ISO standard uses a user-oriented view of the workload.

Rates
of interactions

IP system

.
.
.
.
.
.

users

 21

Fig. 2-3 The user-oriented view of workload

2.2 Basic ideas of the ISO workload description method

The ISO workload is defined as follows:

 Workload is the set of the time behaviour properties
 of the entirety of all users (of the data processing
 system under test) and all the used application programs
 and data.

A data model is used to describe the properties of the set of all users. This set is called user
entirety. This model is the same for all workloads. It is explained here. (Note: In the ISO
standard the specification of this model is distributed over several paragraphs. A summary
is found in "Annex C" of ISO/IEC 14756.) In the data model the user entirety consists of a
set of users. Each user submits tasks (to the SUT) independently from other users. Each
submission is preceded by a random think time. The think times, in the standard called
preparation times, are defined by a mean time and standard deviation. The values of mean
time and standard deviation can depend on the user and the type of submitted tasks. The
data model takes into account that the submission of a task of a defined type can be
preceded and followed by defined (and not randomly chosen) task types. This allows the
definition of fixed task sequences, called task chains. For each user the chains used by him
have to be defined and listed. The length of a chain is either the number of contained tasks
or may be one task, in which case there is no predecessor and no follower task. The users
submit chains in a random order but with defined probabilities of each chain type. For each

Time behaviour properties
of users and used

applications
and data

IP system
.
.
.
.
.
.

users

 22

user the relative frequencies of submitting chain types have to be defined. These relative
frequencies may differ for each user.

2.3 Explanation of the terms "activity", "activity type",
 "task" and "task type"

The basic element of the data model is the "activity". This is an order submitted to the SUT
by a user demanding the execution of a data processing operation. Examples: Compile a
defined COBOL program; perform a defined data base request to an electronic personal
information system; execute a compiled program using a defined input data set; open an
interactive menu ; start one step of this menu by a mouse click.

Listing all activities of all users of the user entirety and classifying them yields the
"activity types". An activity type is a class of activities which are regarded as equivalent.
The equivalence is to a certain degree a discretionary decision of the designer of a
workload. Examples: The activity type "compile medium size COBOL program" assumes
compilations of COBOL programs having 500 to 2000 lines of code; the activity type
"telephone number search" subsumes all database requests in the electronic telephone book
of a company. Let w be the number of activity types of a defined workload and ATi the
name of the i-th activity type. Then the list of all activity types will be

 AT1, AT2, AT3,, ATw .

The ISO data model assumes that a submission of an activity is preceded by a so-called
preparation time, colloquial think time, which elapses before the task submission. Before
starting the preparation time the user decides whether it begins with the submission of the
preceding task or begins when the preceding task has been completed. The first case is the
NOWAIT mode of task submission. The second case is the WAIT mode of task
submission. In the ISO/IEC 14756 these modes are called "task modes".

Note: These two modes are not equivalent to the "dialog" (or "interactive") and "batch"
mode in mainframe systems and UNIX systems. (See Sections 11.5.1.1, 11.5.2.1) for
problems with "batch" modes.) ■

In other words: The task mode indicates whether the preparation time for the next task
begins with the submission of the preceding activity or begins when the preceding activity
has been completed.

In the ISO model, whenever a user submits a task he states his requirements concerning the
execution time of the activity.

In the simplest case, this requirement is a time limit of the execution time ("threshold").
Example: Completion of the ordered activity within 5 seconds. But the requirement can
also be a "worst case distribution" of the execution time. Simple example: 90% of the
execution times may not be longer than 2 seconds; and no execution time may be longer
than 10 seconds. These threshold and the worst case distribution are examples of so-called
timeliness functions (see Section 2.5).

Let p be the total number of different timeliness functions used by the user entirety and
TFi the name of the i-th timeliness function. Then the list of all timely functions will be

 23

 TF1, TF2, TF3,, TFp .

Whenever a user orders the SUT to execute an activity he includes with it the value of the
task mode and a timeliness function. Such a combination of specific activity, a specific
value of the task mode and a specific timeliness function is called "task". Now we list all
tasks which occur (when a defined user entirety is active) and classify them according to
the triples of task type, task mode and timeliness function. I.e. we find out the so-called
task types. Each task type is a triple

 AT , M , TF

where AT is the activity type, M is the value of the task mode and TF is the timeliness
function. We use (for simplicity) M=0 for NOWAIT and M=1 for WAIT. Having
performed the above classification we find the set of different task types. The total number
is named m. The j-th task type is named TTj. The list of all task types will be

 TT1, TT2, TT3,, TTm .

Note: The total number of possible task types is the product w*2*p. Usually, not all
possible triples are used by the user entirety. Therefore it holds that m < w*2*p . ■

2.4 Explanation of the terms "chain" and "chain type"

The users submit, as explained in Section 2.2, typically sequences of tasks. A sequence of
tasks is called task chain (abbreviated as "chain"). To describe a chain we have to list the
sequence of the types of the tasks submitted by a user, as for instance

 TT3, TT1, TT4, TT3 .

Listing all different sequences yields the set of chain types. Let u be the total number of
chain types and

 CT1, CT2, CT3,, CTu

the list of all names of chain types. Example: u = 3.

 CT1 = TT3, TT1, TT4, TT3
 CT2 = TT2
 CT3 = TT1, TT1

CT2 shows an example of a task type which is intended to be executed "alone" and not
included in preceding and following tasks.

The length of a chain type is the number of contained tasks. The length of CT1 is 4, of
CT2 is 1 and of CT3 is 2 .

 24

2.5 Explanation of the timeliness function

A timeliness function (abbreviated as TF) is the description of the user requirements for the
completion time of the ordered "activity" of the "task". The TF is specific to each task
type.

Creating a timeliness function is shown by examples.

First example:
It starts with defining a basic requirement of the execution times. This is done by setting a
time class limit gT(1) and the according relative time class frequency rT(1). For
instance we set

 gT(1) = 2 seconds and rT(1) = 0.90 .

This means that up to 90% of the execution times of the regarded task type may not exceed
2 seconds, and this setting allows that 10% of the execution times can be longer than 2
seconds. An upper limit, therefore, has to be set. For instance we define that no execution
time may be longer than 10 seconds. Herewith we have stated the values of a second time
class limit gT(2) = 10 seconds and the according relative time frequency
rT(2) = 1.0 . The created timeliness function has two classes. The total number of
classes is named z . We have z = 2 . Let the timeliness function be TF1. TF1
can be represented as shown in Fig. 2-4 .

 TF1 z = 2
 k gT(k) rT(k)
 1 2.00 sec 0.90
 2 10.00 sec 1.00

Fig. 2-4 Example of a timeliness function having two time classes

Second Example:
We set the time class limit to 3 seconds. Additionally we state that no execution time may
override this value. I.e. 100% of the execution times shall be between 0 and 3 seconds.
Thus a "one class timeliness function" is defined. We have z = 1 . Let the timeliness
function be TF2. TF2 can be represented as shown in Fig. 2-5 .

 TF2 z = 1
 k gT(k) rT(k)
 1 3.00 sec 1.00

Fig. 2-5 Example of a timeliness function having only one time class

Colloquially a "one class timeliness function" is called "threshold".

 25

Third Example:
We set the basic requirement to be the same as in the first example, i. e. gT(1) = 2
seconds and rT(1) = 0.90 . But with regard to the second time class we make an
extension. 2% of the execution times may have a duration of up to 20 seconds. This defines
a third time class. Let this timeliness function be TF3. TF3 can be represented as shown
in Fig. 2-6 .

 TF3 z = 3
 k gT(k) rT(k)
 1 2.00 sec 0.90
 2 10.00 sec 0.98
 3 20.00 sec 1.00

Fig. 2-6 Example of a timeliness function having three time classes

General rules:
● There is no general limit to the total number of time classes of a
 timeliness function. But in practice there are usually 2 or 3 classes.

● gT(k) and rT(k) must be increasing functions. I. e.:

 0 < gT(1) < gT(2) < < gT(z) (2.1)
 and 0 < rT(1) < rT(2) < < rT(z) (2.2)

● The term rT of the uppermost class always has the value of one, i.e.:

 rT(z) = 1.00 (2.3)

2.6 The basic parameters of an ISO-type workload

Typically not all users of a user entirety are different. Often a user entirety contains users
which have, with respect to the task types, the chains, the preparation times, the relative
frequencies of usage of chain types etc. the same properties. Such users define a user type.
Let n be the total number of different user types of a user entirety and Nuser(i) the total
number of users of the i-th type. These values are basic parameters of the ISO workload.
Additional basic parameters are shown in previous paragraphs. The complete set of all
basic parameters is shown in Fig. 2-7.

The basic parameters are 1 + n + 1 + 1 + 1 + 1 = 5 + n values. The ISO
workload consists of this set of user behaviour parameters (see Section 2.7), the application
programs and their data (see Section 2.8) and the advanced parameters (see Section 2.9).

 26

 n total number of user types
 Nuser(1)
 Nuser(2)
 Nuser(3) total numbers of users of each type

 Nuser(n)
 w total number of activity types
 p total number of timeliness functions
 m total number of task types
 u total number of chain types

Fig. 2-7 The basic parameters of an ISO workload

The total number of users is Ntot.

 Ntot = Nuser(1) + Nuser(2) + ... + Nuser(n) (2.4)

A simple example of a basic parameter set is shown in Fig. 2-8 .

 n = 2 total number of user types
 Nuser(1) = 2 total number of users of type 1
 Nuser(2) = 1 total number of users of type 2
 w = 2 total number of activity types
 p = 3 total number of timeliness functions
 m = 4 total number of task types
 u = 3 total number of chain types

Fig. 2-8 Simple example of the basic parameter values of an
 ISO workload having Ntot = 2 + 1 = 3 users

2.7 The user behaviour parameters

The user behaviour is described using four lists and three matrices.
The four lists are:
 ● activity types
 ● task types
 ● timeliness functions
 ● chain types

The three matrices are:
 ● relative chain frequencies
 ● preparation time mean values
 ● standard deviation values of the preparation times

 27

2.7.1 The activity type values

As shown in Section 2.3 an activity type represents a class of activities. One representative
activity has to be chosen for the definition of the activity type. This activity is described by
its input data which have to be submitted to the SUT. This is the usual situation, but there
are two special cases.

Special case 1: The activity consists of several sequential steps, in which can be defined as
one complex activity. The set of all partial input data is the input data of this activity. The
sum of all partial preparation times is the preparation time of this activity. The execution
time of this activity is the sum of all partial execution times.

Special case 2: Varying input data may be unavoidable. An example is with the activity
"create a bank account". Whenever such an activity is submitted to the SUT a new bank
account has to be created which has to be unique. This is an example of "input variation"
within an activity type. The rules for varying the input data have to be specified for all
activity types using input variation.

According to the total number w of activity types the list of activity types has w entries.
Each entry consists of the following parts:

 ● Current number of the activity type.
 ● Logical meaning of the input.<
 ● Length of the input string (number of characters) submitted by
 the user or, in case of graphical input, the number of graphic
 actions (such as cursor movements and clicks).
 ● The input string itself or the list of graphical actions.
 ● Complete definition of all rules on how to modify
 the input data if there is any activity input variation.

Fig. 2-9 shows a simple example. The user entirety has only two activity types.

 Name: AT1 AT2

 Activity type number: 1 2

 Logical meaning of Name of a input to a
 the input: shell script program

 length of the
 input string: 7 characters 6 characters

 The input string itself: testjob showxx

 Activity input variation: - none - yes *)

 *) Rule: xx are two decimal digits which change randomly
 before each task submission to the SUT.

Fig. 2-9 Simple example of an activity type definition list (w = 2)

 28

2.7.2 The task type values

As shown in Section 2.3 a task type is defined by a three values: Activity type, task mode
and timeliness function. The task type list has m entries, each consisting of the following
values

 ● Current number of the task type
 ● Number of the activity type used in the task type
 ● Value of the task mode M
 ● Number of the timeliness function stated for this task type

Fig. 2-10 shows a simple example of a user entirety with four task types.

 Name TT1 TT2 TT3 TT4

 Task type number 1 2 3 4

 Activity type number 2 1 1 2

 Value of M 1 1 1 0

 timeliness function
 number 2 1 2 3

Fig. 2-10 Simple example of a task type definition list (m = 4)

2.7.3 List of timeliness function values

The list has p entries, each consisting of:

 ● Current number of the timeliness function
 ● Number z of time classes of the timeliness function
 ● z pairs of values "time class limit gT"
 and "maximum allowed relative frequency rT"

Fig. 2-11 shows an example containing the three timeliness functions of Section 2.5 .

 29

 Name TF1 TF2 TF3

 Current number 1 2 3

 Number z of time classes 2 1 3

 z couples gT(1) 2.00 sec 3.00 sec 2.00 sec
 rT(1) 0.90 1.00 0.90
 gT(2) 10.00 sec - 10.00 sec
 rT(2) 1.00 - 0.98
 gT(3) - - 20.00 sec
 rT(3) - - 1.00

Fig. 2-11 Example of a timeliness function definition list (p = 3)

2.7.4 List of chain type definitions

The list has u entries as explained in Section 2.4 . Each entry consists of:

 ● Name of the chain type
 ● Current number of the chain type
 ● Length of the chain (total number of tasks)
 ● The sequence of task types

Fig. 2-12 shows an example containing the three chain types of Section 2.4 . For "length
of chain type" (number of contained tasks) see Section 2.4 .

 Name CT1 CT2 CT3

 Current number 1 2 3

 Length 4 1 2

 task type sequence 3,1,4,3 2 1,1

Fig. 2-12 Example of a chain type definition list (u = 3)

2.7.5 The relative chain frequencies

In this section we assume at first a simple situation of only one user type. Each user uses
the three chain types which were defined in Section 2.7.4 . As explained in Section 2.2 the
relative frequencies of submitting chains have to be defined. For instance the users of user

 30

type 1 submit 10% chains of the chain type 1, 50% of chain type 2 and the rest (i.e. 40%)
of chain type 3. This yields the list shown in Fig. 2-13a .

 chain type relative frequency

 1 0.10
 2 0.50
 3 0.40

Fig. 2-13a Relative chain frequencies of users of user type 1

According to the example of Fig. 2-8 we now introduce a second user type. We assume
that the users of this type submit 30% chains of chain type 1, no chains of chain type 2 and
the rest (i. e. 70%) of chain type 3. This yields the list shown in Fig 2-13b .

 chain type relative frequency

 1 0.30
 2 0.00
 3 0.70

Fig. 2-13b Relative chain frequencies of users of user type 2

In the ISO standard the relative chain frequencies are represented by the term q(i,l)
where i is the current number of the user type and l is the current number of the chain
type. Putting together the q-lists for all user types yields the so-called q-matrix which
has u rows and n columns. The q-matrix resulting from Figures 2-13a and 2-13b is
shown in Fig. 2-14 .

 i= 1 2 q-matrix with

 l=
 1 0.10 0.30
 q(1,1) = 0.10, q(1,2) = 0.50, q(1,3) = 0.40
 2 0.50 0.00
 q(2,1) = 0.30, q(2,2) = 0.00, q(2,3) = 0.70
 3 0.40 0.70

 q(i,l)

Fig. 2-14 Example of a q-matrix (u = 3 chain types, n = 2 user types)

Please note firstly that a q-value never can be greater one; and secondly that the sum of all
values of each column has to equal exactly one.

 31

2.7.6 Preparation time mean values

Section 2.3 explained that each submission of a task is preceded by a user preparation time
(think time).

The preparation time varies randomly if this user subsequently submits tasks of this type.
The mean value of the preparation times preceding the tasks of the j-th task type is h. In
our example there are m = 4 task types. Consequently we have to define four h-values
as, for example, in Fig. 2-15a .

 task type preparation time mean value

 1 10.0 sec
 2 3.0 sec
 3 15.0 sec
 4 1.0 min

Fig. 2-15a Preparation time mean values of users of user type 1

In our example we have two user types. It may be that user type 2 uses preparation times
having mean values which are different from those of user type 1. The values listed in Fig.
2-15b are an example.

 task type preparation time mean value

 1 2.0 sec
 2 2.0 sec
 3 10.0 sec
 4 30.0 sec

Fig. 2-15b Preparation time mean values of users of user type 2

In the ISO standard h(i,j) is the term for the preparation time mean values where i
is the current number of the user type and j is the current number of the task type.

Putting together the h-lists for all user types yields the so-called h-matrix. It has m
rows and n columns. The h-matrix resulting from Figures 2-15a and 2-15b is shown in
Fig. 2-16 .

 32

 i= 1 2

 j=
 1 10.0 sec 2.0 sec

 2 3.0 sec 2.0 sec
 h(i,j)
 3 15.0 sec 1.0 sec

 4 60.0 sec 30.0 sec

 h-matrix with

 h(1,1) = 10.0, h(1,2) = 3.0, h(1,3) = 15.0, h(1,4) = 60.0
 h(2,1) = 2.0, h(2,2) = 2.0, h(2,3) = 1.0, h(2,4) = 30.0

Fig. 2-16 Example of a h-matrix
 (m = 4 task types, n = 2 user types, values are in seconds)

2.7.7 Preparation time standard deviation values

The standard deviation s corresponding to each mean value has to be defined. This yields
the s-matrix. It has, like the h-matrix, m rows and n columns. s(i,j) is the standard
deviation of the preparation times of a user of the i-th type before submitting a task of the
j-th type. An example of an s-matrix is shown in Fig. 2-17 .

 i= 1 2

 j=
 1 2.0 sec 0.1 sec

 2 0.5 sec 0.2 sec
 s(i,j)
 3 0.0 sec 0.2 sec

 4 10.0 sec 8.0 sec

 s-matrix with

 s(1,1) = 2.0, s(1,2) = 0.5, s(1,3) = 0.0, s(1,4) = 10.0
 s(2,1) = 0.1, s(2,2) = 0.2, s(2,3) = 0.2, s(2,4) = 8.0

Fig. 2-17 Example of a s-matrix
 (m = 4 task types, n = 2 user types, values are in seconds)

 33

Notes:

1. A s-value being zero implies that the preparation time does not change randomly . It
always has the mean value which is defined in the h-matrix. ■

2. A s-value may not be too large with respect to the corresponding mean value. A rule of
thumb is that the s-value should not exceed 50% of the h-value. Otherwise in an example
of a unique distribution negative preparation times would appear. Negative times cannot
occur in reality. For this problem see also Section 6.3.3 . ■

2.8 Application programs, their data and computational results

All programs needed for the execution of the set of task types have to be presented on a
digital storage medium (either as executable programs or as the complete source code).
These programs have to be ready for use on the SUT. The required operating system
command procedures (OSCP) also have to be included. The OSCP are of exceptional
importance if the input string of one or more activity types refer to the name of such an
OSCP.

All data which are needed by the application programs and OSCPs for their operation have
to be presented on a digital storage medium. The amount of such data can be small (for
instance only some small files). But it can also be huge (for instance the content of a large
data base).

For all task types the correct computational results (including possible changes of stored
data) have to be specified and listed on a digital storage medium in order to be available
for verifying the correct operation of the SUT. If there is any activity type input variation
then all modified computational results and variations of task output have to be listed
corresponding to the rules of input variation. Alternatively, the rules of output variation
can be defined. It is essential that these rules are comprehensive and complete.

2.9 The advanced parameters of an ISO-type workload

The ISO standard requires three classes of validation.

2.9.1 Computational results

The first validation checks the computational results of the SUT. Each activity must have
been completed with these results. The validation is done with reference to the "correct
results" recorded as explained in Section 2.8 .

2.9.2 Precise working of the RTE

The second validation checks that the RTE created user behaviour values sufficiently near
those specified in Section 2.7 . (See also Section 4.2). There are three check criteria.

 34

 DELTAq: The maximum acceptable relative difference of the measured chain
 frequencies compared with those in the q-matrix.
 DELTAh: The maximum acceptable relative difference of the measured mean
 preparation times compared with that in the h-matrix.
 DELTAs: The maximum acceptable relative difference of the measured preparation
 time standard deviations compared with that in the s-matrix.

Note: The ISO standard allows DELTA values which are different for each combination of
user type and a second argument (chain type or task type). But usually a single DELTA
values is used (see Sections 4.2.2 to 4.2.4) . ■

The values of the three DELTA terms have to be defined. Good values of the first two terms
are

 0 < DELTAq < 0.01 (2.5)

 0 < DELTAh < 0.02 (2.6)

If DELTA limits greater those of (2.5) or (2.6) are used, a less satisfactory accuracy of the
RTE will be tolerated. This implies serious errors in the measured performance values.

A greater DELTAs limit is usually acceptable. A value of 0.05 is very good; but 0.20 is
sufficient. Therefore DELTAs should be set as

 0 < DELTAs < 0.20 (2.7)

2.9.3 Statistical significance

The third validation checks the statistical significance of the measured performance values
(see Section 4.3). There are two criteria (referring to a so-called sequential statistical test):

 ● The confidence coefficient ALPHA of the mean execution times
 ● m confidence intervals "2*d(j)" of the mean execution times
 (j is the current number of the task type)

In practice ALPHA = 0.05 is a very good value. It gives a very high significance but yields
typically a long measurement duration. ALPHA = 0.10 is usually sufficient. But ALPHA
should not be set greater than 0.20 .

With respect to d(j), practical experience is that all d(j) values can have the same
relative value (with respect to the mean execution time). I.e. in practice

 d = 0.05 * (mean execution time)

is a very strong value which yields typically a long measurement duration. But

 d = (0.10 ... 0.20) * (mean execution time)

is mostly sufficient.

 35

Setting

 d = 0.3 * (mean execution time)

yields a poor statistical significance.

The quotient
 drel = d/(mean execution time) (2.8)

is called relative half width confidence interval. This value is often used instead of d .

2.10 Short summary of the contents of an ISO workload

The workload consists of

 ● basic parameters, see Section 2.6,
 and user behaviour parameters, see Sections 2.7.1 to 2.7.7
● application programs (programs, OSCPs,...) and data
 (input data, stored data, correct computational results), see Section 2.8
● advanced parameters
 (DELTA values and significance values), see Section 2.9

To become more familiar with the contents and meanings of the workload description,
perform the exercises in Section 2.11. The detailed format of the workload description is
defined in the Normative Annex C of ISO/IEC 14756. The set of parameters in Sections
2.6 and 2.7 of this book is called "workload parameter set" (WPS) in the standard. For the
ISO representation of a workload in a directory see Sect. 11.1 of this book.

2.11 Exercises

Exercise 1: ISO format of the WPS

Write down the workload parameter as is defined by the examples in Sections 2.6
and 2.7 .

Exercise 2: A very simple PC workload

Define an ISO-type workload generated by a single PC user. The user is assumed to
execute in the DOS shell the two simple DOS commands "DIR" and "print a file
containing a page of alphanumeric ASCII text". Complete the missing data with values of
your own choice. Write down the WPS in ISO format.

Exercise 3: A very simple UNIX workload

Rewrite the workload defined in Exercise 1 for a UNIX system having only one active
user. The user corresponds with the machine via a normal UNIX shell.

 36

Exercise 4: A multi-user workload

Define an ISO-type workload generated by two user groups using a UNIX system via a
normal command shell. The first user group consists of 3 users as in Exercise 3. The
second group consists of one user performing program tests. He compiles a short C
program (assumed to have no syntax errors). Then he runs the compiled program twice
using different input data sets (assumed to produce no run time errors). The user runs this
sequence repeatedly. Complete missing data with values of your own choice.

Exercise 5: Examples of the WLP input format of the DEMO system

Write down the WLPs of the workloads of Exercises 1, 2 and 4 in the input format of the
DEMO system. Then perform for each of these WLPs a dummy run of the DEMO system
only reading the WLP file and printing out its values. Check if they match the ISO WLP.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section2-11.pdf .

 37

3. The measurement experiment

3.1 Principles of operation of the ISO-type user emulator (RTE)

The user emulator RTE emulates the set of users as defined in the basic parameter of the
WLP. In the example of Section 2.6, Fig. 2-8 the RTE has to emulate two users of user
type 1 and one user of user type 2. All users have to be emulated independently. The
principle of operation of emulating a user will be demonstrated by user number 2 of user
type 1.

The user chooses randomly a chain type e.g. CT1 . The task type sequence is 3,1,4,3 (see
Fig. 2-12 of Section 2.7.4). He submits 4 tasks in this sequence. Details of this submission
will be shown later. After the submission of the 4th task the user chooses randomly a chain
type, for instance chain type 3. The task sequence is 1,1 (see again Fig. 2-12). The user
submits a task of task type 1, followed by another task of task type 1 . After this
submission the user chooses randomly a chain. e.g. it is of chain type 2 which yields the
submission of only one task (of task type 2, see Fig. 2-12). And so on.

The decision of the chain type has to be done randomly but according to the preset q-
values of the WPS (see Section 2.7.5, Figures 2-13a and 2-14). The values in our example
are

 10%, 50%, 40% for the chain types 1, 2, 3 .

Later it will be shown how to implement a suitable random generator, see Section 3.6.1
and also the "Urn Method" (described in Chapter 6).

It is assumed that a random sequence of 10 chains is to be generated, consisting of the
chain types 1, 2 and 3, where (according to the relative chain frequencies cited above)
chain type 1 is included once, chain type 2 is included 5 times and chain type 3 is included
4 times. An example of a (random) sequence is as follows:

 | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 2 | 3 | 2 |

The 10 chains yield 17 tasks (according to Fig. 2-12 in Section 2.7.4) tasks. The resulting
sequence of task types is as follows:

 | 3,1,4,3 | 1,1 | 2 | 1,1 | 2 | 1,1 | 2 | 2 | 1,1 | 2 |

Before submitting a task the user emulator waits for a "task preparation time" , colloquially
called think time. This preparation time has to be randomly chosen as follows. The
preparation time preceding task type 1 is named h1 . Those of task type 2 is named h2
etc. Inserting this terms into the task type sequence yields the following sequence of pairs
of preparation time and following task type number.

 | h3 3, h1 1, h4 4, h3 3 | h1 1, h1 1 | h2 2 | h1 1, h1 1 |
 | h2 2 | h1 1, h1 1 | h2 2 | h2 2 | h1 1, h1 1 | h2 2 |

 38

h1 appears 9 times and has to be chosen randomly. But the h1 must have a mean value of
10.0 seconds (according to Section 2.7.6, Figures 2-15a and 2-16) and a standard deviation
of 2.0 seconds (according to Section 2.7.7, Fig. 2-17). How to generate such a series of
random values will be shown later (see Section 3.6.2; see also the "Urn Method" described
in Chapter 6). Let be the name of the 9 values h11 to h19 .

h2 appears 5 times (mean time 3.0 seconds, standard deviation 0.5 seconds). Let be h21 to
h25 the names of the 5 values.

h3 appears twice (mean time 15.0 seconds). Let the name of the two values be h31 and
h32 . The standard deviation is zero (see Section 2.7.7, Fig. 2-17). This means that both
h3 values are the same and are equal to the mean value of 15.0 seconds.

h4 appears only once. Let be h41 the name of this value. This single value must be equal
the defined mean value of 60 seconds. The stated standard deviation is 10.0 seconds
yielding the following problem.

A random variable appearing only once has a standard deviation of zero. Therefore the
chosen task sequence cannot fulfil the required value of the standard deviation of the
preparation time preceding the task type 4 which was set to be 10.0 seconds. This example
shows a situation which often arises. The chain sequence is too short. It must be long
enough so that every activity type, with a non-zero standard deviation appears at least
twice. The solution is simple. Use a double chain sequence (i.e. a sufficiently long
measurement duration). Then the problematic task type appears twice and the stated
standard deviation can be realised. We ignore this problem for the moment and continue
using the above sequence.

We replace the hx terms by the hxy terms, where x is the task type and y is the current
task number of this type, and get the following sequence.

h31 3, h11 1, h41 4, h32 3	h12 1, h13 1	h21 2		
h14 1, h15 1	h22 2	h16 1, h17 1	h23 2	h24 2
h18 1, h19 1	h25 2			

Before submitting a task to the SUT the user takes the task type definition (see Fig. 2-10 in
Section 2.7.2) to determine the activity type of the task. Additionally he gets the value of
the task mode M. M indicates if the think time starts immediately after the submission of the
preceding task (M = 0) or if the user has to wait for the completion of the preceding task
(M = 1). For the M-values in our example see Fig. 2-10 . Inserting the task mode values (0
or 1) on the left of each hxy yields the following sequence.

1 h31 3, 1 h11 1, 0 h41 4, 1 h32 3	1 h12 1, 1 h13 1	1 h21 2		
1 h14 1, 1 h15 1	1 h22 2	1 h16 1, 1 h17 1	1 h23 2	1 h24 2
1 h18 1, 1 h19 1	1 h25 2			

Replacing the task type numbers by the activity type numbers (with reference to Fig. 2-10)
yields the following sequence.

1 h31 1, 1 h11 2, 0 h41 2, 1 h32 1	1 h12 2, 1 h13 2	1 h21 1		
1 h14 2, 1 h15 2	1 h22 1	1 h16 2, 1 h17 2	1 h23 1	1 h24 1
1 h18 2, 1 h19 2	1 h25 1			

 39

This sequence is not yet complete. The hxy values still have to be inserted. An example of
suitable random values in seconds is the following list. They are computed by the Urn
Method (see Section 6.3.2) and have the mean values and standard deviations as set above.

 h11 = 09.225 h21 = 02.293 h31 = 15.000 h41 = 60.000
 h12 = 11.549 h22 = 03.354 h32 = 15.000
 h13 = 07.676 h23 = 03.707
 h14 = 13.098 h24 = 03.000
 h15 = 06.902 h25 = 02.646
 h16 = 10.000
 h17 = 12.324
 h18 = 10.775
 h19 = 08.451

Inserting these values yields the sequence shown in Fig. 3-1 . Because the sequence
represent 17 tasks, it has 17 triples, each consisting of

 ● value of the task mode (0 or 1)
 ● preparation time (in seconds)
 ● activity type number

1 15.000 1, 1 09.225 2, 0 60.000 2, 1 15.000 1	1 11.594 2, 1 07.676 2		
1 02.293 1	1 13.098 2, 1 06.902 2	1 03.354 1	1 10.000 2, 1 12.324 2
1 03.707 1	1 03.000 1	1 10.775 2, 1 08.451 2	1 02.646 1

Fig. 3-1 Example sequence of 17 tasks each described by a triple
 of (task mode value, preparation time, activity type number)

The sequence shows the steps which the RTE has to execute when emulating the user in
our example. The sequence contains one example without waiting for the result of the
preceding task. The preparation time of the third task has to begin immediately after the
submission of the second task. The preparation times of all the other tasks have to begin
only after the SUT has completed the preceding task.

Finally the activity type numbers should be replaced by the corresponding input strings
(see Fig. 2-9 in Section 2.7.1) which have to be submitted to the SUT for starting the task
execution. In case of type 2 activities the last two characters of the strings have to be
modified according to the rule described in Fig. 2-9 . This yields the detailed list of steps
which are to be performed by the emulator of the second user of the first user type in our
example. It is the task list of this user. Analogously can the task lists be set up for the first
user of the first user type and the only one user of the second user type.

In our example the users interact with the SUT via alphanumerical commands. If they
could interact using graphic interactions only a slight change would be necessary. The
activity type numbers do not have to be replaced by the alphanumerical input strings but by
the graphical action control data such as the mouse clicks or cursor positioning data.

 40

For each user an individual sequence of the type shown in Fig. 3-1 has to be created and
thereof a task list. Each user has to be to be emulated independently from the others. Each
individual user emulator has to record a detailed logfile any which has to contain all
actions, time stamps for every step and any additional information (see Section 3.4). Also
the computational results have to be recorded, mostly not in the logfile but in a separate
file (see Section. 3.5).

3.2 Dynamic task generation versus pregenerated task lists

An obvious way to realise a user emulator is the "dynamic" one. This means that the
emulator randomly chooses a chain type, defines the step elements of the chain and
executes it. Then the emulator randomly chooses the next chain type etc. Many references
to all previous task data have to be checked in order to retain the relative chain frequencies,
the preparation time mean values and the required standard deviations. Additionally the
input string variation of the relevant activity types and many other operations have to be
performed. Very fast hardware is needed for the emulation of a user. Typically if the total
number of users Ntot (see Section 2.6, formula (2.4)) is large then a vast amount of
hardware is needed to realise the RTE which has to work in realtime and without time
delays.

This amount can be reduced by pregeneration of the task lists. The idea is simple. A
program generates a task list for each of the Ntot users. The generation has to be performed
according to Section 3.1 . The lists have to be long enough to realise a suitable duration of
the measurement. The pregeneration has to be done separately before the measurement run.
Therefore it is not time critical. It is not necessary to generate the lists simultaneously. The
generation can be performed separately for each user. When completed the Ntot emulators
will be started simultaneously. The work of an emulator, which only has to execute the
steps of a pregenerated list needs significantly less hardware speed than the dynamic task
generation. What is needed is only a task submitter which acts according to the steps in the
list. It is possible to emulate even a large number of users by a typical medium size
computer.

The actions of such a task submitter are simple.

Step 1: Read an entry (task element) from the task list.
 (It contains the task mode value, the preparation time
 value and the input string.)
Step 2: Wait for the task completion of the preceding task if
 the task mode value is 1. Otherwise do not wait.
Step 3: Wait according to the preparation time value.
Step 4: Submit the input string to the SUT. Then go to step 1.

Note: At the beginning the emulator has to neglect the position "task mode" of the very
first entry, due to fact that there is no preceding task. ■

There is an important fact to be considered. Present day operating systems are typically not
able to perform the actions "wait for the result of the preceding task before submitting the
actual task" and "do not wait to the result of the preceding task before submitting the actual
task". What the operating systems can do is to bring a submitted task either into the
foreground, "interactive job", or into the background, "batch job". Therefore the submitter

 41

cannot interpret the task mode values "0" and "1" for "batch" and "interactive" or vice
versa. But there is a solution. The task submitter has to perform a "look-ahead" as follows.
When processing a task element the task submitter also has to check the next task element.
If the task mode of this next task element is "0" then submit the actual task as a
background job. If the task mode of this next task element is "1" then submit the actual
task as an interactive job. The task submitter has to perform dynamically a so-called look-
ahead before processing a task element .

The necessity for implementing the look-ahead operation in the submitter can be avoided
by a modification of the task list as follows. Replace the task mode value by "B" if the task
mode value of the next task element is "0". Replace the task mode value by "I" if the task
mode value of the next task element is "1". Fig. 3-2 shows the list of Fig. 3-1 after
performing this modification.

I 15.000 1, B 09.225 2, I 60.000 2, I 15.000 1	I 11.594 2, I 07.676 2		
I 02.293 1	I 13.098 2, I 06.902 2	I 03.354 1	I 10.000 2, I 12.324 2
I 03.707 1	I 03.000 1	I 10.775 2, I 08.451 2	I 02.646 1

 Sequence of 17 tasks each described by a triple of
 (batch/interactive mode, preparation time, activity type number)

Fig. 3-2 Example sequence of Fig. 3-1 after look-ahead transformation.

The operation principle of the task submitter for such a list is easier to implement with
respect to present day operating systems. The principle is as follows:

Step 1: Read entry (task element) from the task list.
 (It contains the batch/interactive mode, the preparation
 time value and the input string.)
Step 2: Wait according to the think time value.
Step 3: Submit input string for a background job if the mode is "B";
 submit it for an interactive job if the mode is "I".
Step 4: Wait until the SUT is ready for receiving the next job
 submission. Then go to step 1.

Note: The mode, background or interactive, of the last task element in the list can be
ignored. This is due to fact that there is no following task. ■

Reuse of pregenerated task lists: Naturally, a pregenerated task list can be reused for a new
measurement. There is no technical reason to make this impossible. However, this violates
the idea of the ISO standard which states that tasks shall be randomly chosen. The danger
is that people could make efforts of tuning the SUT for one defined pregenerated task list.
This is not permitted in the standard. After the measurement one should delete this list and
generate a new list when repeating the measurement of the same SUT as well as when
measuring a different SUT.

 42

3.3 The three phases of a measurement run

The ISO measurement procedure consists of three phases as shown in Fig. 3-3 :

 ● stabilisation phase (StP)
 ● rating interval (RI)
 ● supplementary run (SR)

Fig. 3-3 The three phases of a measurement run

The StP: The RTE is activated on. After some time it starts to work. This is time t0. The
login procedures of the emulated users are either started at once or after arbitrary times.
The StP is intended to bring the SUT into a stable state of operation. There is no regulation
in the ISO standard concerning the duration of the StP. The measurement operator decides
on the duration according to his experience. After the logins, the RTE has to start the task
submissions according to the workload parameter values. The completion times of the
tasks are not taken into account for the computation of the performance values. The end of
the StP is the time t1 .

The RI: The RI begins at t1 . The task submission has to be performed according to the
workload parameter values. The completion time of each task submitted during the RI is
taken into account for the computation of the performance values. The RI duration has to
be chosen appropriate to the workload. If the duration is too short then at least two
problems may arise. First there is the risk that the check criteria of statistical significance
of the measured performance values will not be satisfied. Second there is the risk that the
check criteria of sufficient precise work of the RTE will also not be satisfied. (For these
two aspects see Section 2.9 .) The end of the RI is t2 .

time

t0 t1 t2 t3

OP

RTE on RTE shutdown

StP RI SR

 43

The SR: According to the ISO requirements the RTE should not be stopped at the end of
the RI. It must continue to work according to the workload parameters until time t3 . This
is the moment when all tasks submitted within the RI are completed. The SR is needed to
ensure an identical statistical load situation for uncompleted tasks in the RI. If the RTE
were stopped at t2 then those tasks which were still running at t2 would be completed
earlier due to less load on the SUT. The RTE may be shutdown either at t3 or later.

The OP: The time from t1 to t3 is the observation period (OP). For this period the
measurement procedure has to be validated by checking all tasks submitted to the SUT (for
details see Chapter 4).

Note (concerning the duration of the StP): The longer the StP the better. But if the StP is
longer than necessary then there is no additional advantage. If the StP is too short then the
load may fluctuate too much in the first part of the RI; i. e. the RI would have to be
lengthened for achieving the required statistical significance of the performance values. ■

3.4 The logfile (measurement result file)

The historical data of all tasks submitted during the OP have to be recorded in a logfile.
For each task a data set, "logfile record", has to be created. According to "Annex D" of
ISO/IEC 14756, each logfile record has to contain at least the following entries.

 ● Current number of the task listed chronological since t1, regardless
 of the user submitting the task.

 ● Type number of the user submitting the task.

 ● An identification of the user submitting the task
 (e.g. a string or the current number of the user within the
 group of users of the same type).

 ● Type number of the task. Additional the actual submitted input
 string of the activity is recommended.

 ● Type number of the chain containing the task.

 ● Sequential number of the task within the chain.

 ● Time stamp at the start of the preparation time preceding the task.

 ● Time stamp at the task submission.

 ● Time stamp at the completion of the task.

The ISO standard proposes that a typical time stamp has a precision of 1/100 second. But it
recommends that it be modified to a proper value (greater or smaller) if needed.

 44

With respect to the time stamps the ISO standard defines the following:

 ● task submission (begin of execution time) is the event when the
 total input (strings, files, cursor movements, etc.) is completely
 received at their destination in the SUT.

 ● task completion (end of execution time) is the event when the total
 output (strings, files, graphic information, etc) is completely
 received at their destination.

Distinction is needed between the external and internal task results. The external task result
is the information seen by the user at his interface (usually a computer screen). The internal
task result is the information stored on the hardware, such as in files and in databases. The
internal task result is not explicitly shown to the user submitting the task. The event of task
completion occurs when both the external and internal task results are completed and
received at their destinations.

Of course the logfile need not to be confined to one physical file; it could be a set of files
or parts of a data base system. It is recommended that the logfile be divided logically into
two parts: an RI part and an SR part. This makes it easier to perform the validation (see
Chapter 4).

3.5 Storing the computational results

All computational results produced by the tasks running on the SUT have to be stored
during the observation period (possibly shortened or compressed). This computational
result file has to be complete enough to prove unequivocally the correct execution of all
tasks processed by the SUT and their correct computations.

As with the logfile, the computational result file need not be confined to one physical file.
It is recommended that this also be divided logically into two parts: an RI part and an SR
part. This makes it easier to perform the validation (see Chapter 4).

For dynamic correctness checking without storing computational results see Section 4.4 .

3.6 Some random generation methods

3.6.1 Generation of random chain type numbers

The relative chain type frequencies required by users of a defined type are specified in the
q-matrix of the WPS. For instance, the relative chain frequencies of a user of user type 1 in
our example (see Fig. 2-14 in section 2.7.5) are as follows:

 chain type relative frequency
 1 0.1 (i.e. 10%)
 2 0.5 (i.e. 50%)
 3 0.4 (i.e. 40%)

 45

To generate a random sequence of chain type numbers having this relative frequencies we
use a unique distributed random generator. It is available as a standard function in most
programming languages. Such a generator produces random numbers in the interval (0,1).

To generate the chain type numbers we divide the interval (0,1) into subintervals according
to the chain frequencies. In our example we get the intervals

 (0.0, 0.1) for chain type 1 ,
 (0.1, 0.6) for chain type 2 ,
 (0.6, 1.0) for chain type 3 .

To obtain a chain type number the random generator is started. It could deliver the value
0.155, which is included in the second interval, yielding chain type 2. The next random
number could be 0.720, yielding chain type 3. And so on. Repeating this several times
yields a random sequence of chain type numbers approximating to the required
distribution. The approximation is improved by lengthening the sequence, (see also Section
3.6.3). See Chapter 6 for the "Urn Method" which does not only approximate but delivers
an exact distribution with a finite length of the sequence.

3.6.2 Generation of random preparation times

To generate random preparation times we use the fact that the distribution type of a
random variable X = c*x , where c is a constant, is the same as of x.

Example: Preparation time values of the task type 4 for user type 2
 (according to Section 2.7.6, Fig 2-16):
The required mean time is 30.0 seconds. We use the same unique distributed random
generator as in Section 3.6.1 . We start it and it produces, for instance, the value 0.177 .
Then the preparation time value will be 0.177*(2*30.000) = 10.620 seconds. Next random
number might be 0.899. Then the preparation time value would be
0.899*(2*30.000) = 53.94 seconds. And so on.

Note: The factor of 2 in the formula is necessary because the mean value of a "(0,1) unique
distributed" random variable equals 0.5 and not 1.0 . ■

Such a generated preparation time sequence is an approximation. It is improved by
lengthening the sequence. For this problem see Section 3.6.3 .

The simple method of the example cannot alter the value of the standard deviation. The
longer the sequence, the nearer the standard deviation will approach that of the
"(0 , 60.00) unique distribution". For more details see specialist literature of mathematical
statistics. There are other methods described for generating sequences of general
distribution types having a predefined standard deviation value. Additionally compare
Section 3.6.3 for problems with finite random sequences.

For a method which does not only approximate but deliver a distribution keeping exact
mean value and standard deviation even in case of a finite length of the sequence see
Chapter 6 ("Urn Method").

 46

3.6.3 A practical problem with finite random sequences

A real measurement has a defined duration. A defined number of task chains and of
preparation times occur. Contrary to this, the random generation methods as discussed
above presume an "infinite series of samples". Therefore the relative frequencies of a finite
long random chain type sequence differ from the required values. The mean values and
standard deviations of a finite number of preparation times also differ from the specified
values. The values are improved by lengthening the sequence, i.e. by lengthening the
measurement duration. As a consequence we have to take into account that the preparation
time mean values, their standard deviations and the relative chain frequencies of an RTE
differ from the specified values. (These values are q-, h- and s-values of the WPS.)
This fact is the reason for introducing the DELTA validation criteria (see Section 2.9.2).

3.7 Exercises

Prerequisite: Provide a random generator producing unique distributed numbers in the
interval (0,1). This can for instance easily be realised by a pocket calculator having a
random function or by writing a little program using a standard subroutine "RANDOM".

Exercise 1: Inaccuracy of the mean values

The exercise 1 assumes that the mean preparation time of a defined task is set to 10.0
seconds.

Part 1
Generate, using the method of Section 3.6.2 three sequences each having 5 random
preparation times.
 ● Compute the mean value of each sequence.
 ● Compute the relative differences with the required mean of
 10.0 seconds.
 ● Compare these relative differences.

Part 2
Generate, using the same method, three similar sequences each having 10 random
preparation times.
 ● Compute the mean time of each sequence.
 ● Compute the relative differences to the required mean of
 10.0 seconds.
 ● Compare these relative differences with those of Part 1. Rate the
 improvement (if any) in the approximations of the required mean
 compared with those of Part 1 .

Part 3
Repeat Part 2 with each sequence having 20 random preparation times. Additionally, rate
the improvement (if any) in the approximations of the required mean compared with those
of Parts 1 and 2.

 47

Exercise 2: Generation of task lists

Use the following WPS.

File: ch3-exercise2-wps.txt

 Workload parameter set
 ======================

1. Basic parameter values

 (1) Total number of different user types: n = 2 ;

 (2) Total amount of emulated users of each type: N_user(1) = 1
 N_user(2) = 1

 (3) Total number of different activity types: w = 3 ;

 (4) Total number of different timeliness functions: p = 1 ;

 (5) Total number of different task types: m = 3 ;

 (6) Total number of different chain types: u = 3 ;

2. Activity type definitions

Activity type number:	1	2	3
 | | | |
 (1) The logical meaning | | | |
 of the input: | *) | *) | *) |
 | | | |
 (2) The length (number | | | |
 of characters) of | | | |
 the input string: | 3 | 3 | 3 |
 | | | |
 (3) The input string | | | |
 itself: | TT1s | TT2s | TT3s |
 | | | |
 (4) Activity type | | | |
 input variation: | none | none | none |

 *) The name of a shell script

3. Task type definitions

(1) Current number j of the task type:	1	2	3
 | | | |
 (2) Number of the activity type: | 1 | 2 | 3 |
 | | | |
 (3) Value of the task mode M(j): : | 1 | 1 | 1 |
 | | | |
 (4) Type number of the timeliness function: | 1 | 1 | 1 |

 48

4. Definitions of the timeliness functions (TF)
--

 (1) Order number of the TF: | 1 |
 ---------------------------- ----------|---------|
 | |
 (2) Number of time classes: | z=2 |
 | |
 (3) z couples of values g_t and r_t, | |
 where g_t is the time limit and | |
 r_t is the maximum accepted | |
 relative frequency: g_t(1):| 1.0 sec |
 r_t(1):| 0.80 |
 | |
 g_t(2):| 2.0 sec |
 r_t(2):| 1.00 |
 | |

5. Definitions of chain types

 (1) The current number l of the chain type: | 1 | 2 |
 --|-----|-----|
 | | |
 (2) The length L_chain(l) of the chain: | 2 | 2 |
 | | |
 (3) The sequence of the task type numbers: | 1,2 | 2,3 |

6. Definition of the chain probabilities

 l | q(1,l) | q(2,l) | l = current number of chain type
 ---|--------|--------|
 1 | 0.80 | 0.20 |
 | | |
 2 | 0.20 | 0.80 |
 | | |

7. Preparation time mean values

 j | h(1,j) | h(2,j) | j = current number of task type
 ---|--------|--------|
 1 | 10 sec | 10sec |
 | | |
 2 | 10 sec | 10sec |
 | | |
 3 | 10 sec | 10 sec |
 | | |

8. Preparation time standard deviations
--

 j | s(1,j) | s(2,j) | j = current number of task type
 ---|--------|--------|
 1 | 3 sec | 3 sec |
 | | |
 2 | 3 sec | 3 sec |
 | | |
 3 | 3 sec | 3 sec |
 | | |

== End of WPS ==

This WPS is found in file
 CD/Sol-files/wps-of-exercises/ch3-exercises2.txt .

 49

Write down the sequence of tasks for all users of this WPS. The length of the sequences
should be 5 chains for each user. Generate the chain sequences using the method described
in Section 3.6.1 . Generate the preparation times using the method described in
Section 3.6.2 .

Exercise 3: Chain sequence duration

Compute - for the sequences generated in Exercise 2 - the expected duration of the
sequence of each user. For computing these values assume the following mean execution
times of tasks:
 Mean completion of TT1 = 2.0 seconds
 Mean completion of TT2 = 0.9 seconds
 Mean completion of TT3 = 0.7 seconds
Have all sequences the same duration ? If not, explain why not.

Exercise 4: Total number of tasks of the RI

Use again the WPS as defined in Exercise 2. Estimate the total number of tasks which are
executed in the following situation: The RI is about 30 minutes. Assume for the SUT
execution times that they just fulfil the timeliness functions (i.e. the SUT is neither faster
nor slower).

Exercise 5: Task lists for DEMO

Prerequisite: The DEMO system is installed according to Exercises 1 and 2 of Section 1.8.

Part 1
Two users are to be emulated. Write down the two task lists of Exercise 2 of the RI for the
DEMO format. For each user DEMO needs 3 task lists: for the StP; the RI and the SR.
Create the missing lists as follows for each user;
 ● for StP, copy the RI list
 ● for SR, copy the RI list .

Part 2
Perform the user emulation using the following three UNIX shell scripts as activity types
1 to 3.

File 'TT1s':
#!/bin/sh

sleep 1
Simulates program run time

#== End of Procedure ==

File 'TT2s':
#!/bin/sh

sleep 2
Simulates program run time

#== End of Procedure ==

 50

File 'TT3s':
#!/bin/sh

sleep 3
Simulates program run time

#== End of Procedure ==

These files are found in directory
 CD/Sol-files/Mment.ch3/OSCPs-TTxs-shells .

Run the emulation by manually starting the DEMO module "demo". Print the DEMO
logfile after running the DEMO module "demo2din".

Part 3
Investigate those parts of the logfile which belong to the RI and compute the following
values:
 ● Mean value of the preparation times preceding TT1, TT2, TT3
 ● Relative chain probabilities
Compare
 ● the computed relative chain frequencies with the values in the WPS
 and explain the reasons for the differences (if any)
 ● the computed mean preparation times values of the WPS and explain
 the reasons for the differences (if any).

Part 4
Investigate the logfile and estimate the times t1 (begin of the RI) and t2 (end of the RI).

Solutions
For solutions see file
 CD/Solutions/Solutions-Section3-7.pdf .

 51

4 Validation of the measurement results

The ISO method stipulates a systematic and comprehensive checking of each
measurement run. This checking ensures that the measurement procedure was technically
correct and that the results were reliable.

4.1 Validation of the computational results of the SUT

The first of the checks concerns the computational results of the SUT. For all tasks of the
OP (the observation period, i.e. the time from t1 to t3) the task results produced by the
SUT have to be compared to the predefined correct computational results which are part
of the workload description (see Section 2.8).

This check includes intentionally those tasks which were submitted during the SR (the
supplementary run, i.e. in the time from t2 to t3). This is to ensure that the SUT has
performed real tasks in the SR and not only dummy tasks.

If all task results were complete and proved to be correct the measurement is acceptable
with respect to the correctness of the SUT.

This assumes that a repeated measurement always starts with the same data configuration.
However, an exception is when the influence of the data configuration is being tested, for
instance if using a data base system with increasing amounts of data.

The validation of computational results cannot be done manually; a program is needed. If
each task type always produces the same results such a program will be simple (file or
string comparison). With input variation (see Section 2.7.1) such a program can be
complex. If the output cannot be uniquely defined then the validation program may have
to use heuristic algorithms. For example, the task might include a search in a digital
online library, the content of which can be changed by other tasks of the workload.

If the SUT produces incorrect work then the measurement is invalid. Even if it were
possible to compute performance values (in a later step of the ISO procedure) they should
neither be rated nor published. The SUT has to be corrected and a new measurement
carried out.

As recommended in Sections 3.4 and 3.5, the computational result file should be
separated into two parts, one for the RI and one for the SR. Both these files will then be
checked for a possible result "OK" or " NOT OK". This separation is for clarity in
working.

For dynamic correctness checking without storing computational results see Section 4.4 .

 52

4.2 Validation of the correctness of the working of the RTE

4.2.1 Three criteria

The second check concerns the correctness of the working of the RTE. It consists of the
following three criteria:

 ● Relative chain frequencies
 ● Mean values of the preparation times (think times), and
 ● Their standard deviation values.

The actual values have to be computed from the measurement logfile and compared to the
required values as defined in the WPS. If one or more of the measured values exceeds the
defined relative limits (DELTA values, see Section 2.9.2) the measurement is invalid due
to an inaccurate RTE. The measurement has to be repeated using a better working RTE.

4.2.2 The first criterion: Checking the relative chain frequencies

As recommended at the end of Section 3.4, the logfile should be separated into two parts,
one for the RI and one for the SR. Both these files will then be checked for a possible
result "OK" or " NOT OK". This separation is for clarity in working. Checking the RI part
is now explained.

The actual relative chain frequencies have to be computed from the logfile of all chains
started during the RI, i. e. the time from t1 to t2 . Let qmeas(i,l) be the computed
relative frequency of chains of type l which were started during the RI by the group of
user type i . q(i,l) is the required relative frequency of chains of type l of user type i.
This value is defined in the WPS . DELTAq(i,l) is the maximum allowed relative
difference of the measured value qmeas(i,l) to the set value q(i,l). The actual relative
difference is DIFFq(i,l). It is computed as follows:

 DIFFq(i,l) = (| qmeas(i,l) - q(i,l)|)/ q(i,l) (4.1a)

Note: The vertical lines "|"..."|" mean the absolute value (i.e. ignoring the sign) of the
value "..." . In the ISO/IEC 14756 this operator was unfortunately omitted in Annex
B.4.1, due to a typing error. ■

DIFFq(i,l) must not exceed DELTAq(i,l) for all user types and all chain types, i.e.
for all combinations of i and l .

The ISO standard allows in the WPS the definition of DELTA values which are different
for each combination of i and l. But in practice a unique DELTAq value is mostly used as
cited in Section 2.9.2 . Therefore the inequality (4.1b) below uses DELTAq and not
DELTAq(i,l).

 DIFFq(i,l) < DELTAq (4.1b)
 for all user types i = 1, 2,...,n
 and for all chain types l = 1, 2,...,u

 53

If this is true, the accuracy of the RTE is within the tolerances with respect to the chain
generation within the RI. Performing this check means computing n*u values
DIFFq(i,l) and comparing each of them to DELTAq .

Example: In Fig. 2-8, Section 2.6, there are n=2 user types and u=3 chain types. 2*3=6
values have to be computed and compared to DELTAq .

The SR part of the logfile has to be checked analogously to the RI part. For the relative
chain frequencies, the functioning of the RTE is acceptable only if both the RI and SR
measurements are acceptable. But there is a practical aspect. The SR is typically much
shorter than the RI. Therefore, from statistical reasons, (4.1b) above is more likely to fail
for the SR than for the RI. It is up to the person responsible for the measurement to decide
whether or not the SR is acceptable for the relative chain frequencies.

4.2.3 The second criterion: Checking the preparation mean times

The same recommendation for separating the logfile as in Section 4.2.2 applies here.
Checking the RI part for preparation times is now explained.

The actual preparation mean time values have to be computed from the logfile of all tasks
of which the preparation times were started during the RI. Let hmeas(i,j) be the
computed mean preparation times of tasks of the j-th task type that were started during
the RI by type i users. h(i,j) is the required mean preparation time of type j tasks of
type i users as defined in the WPS. DELTAh(i,j) is the maximum allowed relative
difference of the measured value hmeas(i,j) to the set value h(i,j). The actual
relative difference is DIFFh(i,j). It is computed as follows:

 DIFFh(i,j) = (| hmeas(i,j) - h(i,j)|)/ h(i,j) (4.2a)

Note: The vertical lines "|"..."|" mean the absolute value. The omission of this operator, in
Annex B.4.1 of ISO/IEC 14756 was unfortunately repeated in Annex B.4.2 . ■

DIFFh(i,j) must not exceed DELTAh(i,j) for all user types and all task types, i.e.
for all combinations of i and j .

The ISO standard allows in the WPS the definition of DELTA values which are different
for each combination of i and j. But in practice a unique DELTAh value is mostly used
as cited in Section 2.9.2 . Therefore the inequality (4.2b) below uses DELTAh and not
DELTAh(i,j).

 DIFFh(i,j) < DELTAh (4-2b)
 for all user types i = 1, 2,...,n
 and for all task types j = 1, 2,...,m

 54

If this is true the accuracy of the RTE is within the tolerances with respect to the mean
preparation times of the tasks of the RI. Performing this check means computing n*m
values DIFFh(i,j) and comparing each of them to DELTAh .

Example: In Fig. 2-8, Section 2.6, there are n=2 user types and m=4 task types. 2*4=8
values have to be computed and compared to DELTAh .

The SR part of the logfile has to be checked analogously to the RI part. For the mean
preparation times, the functioning of the RTE is acceptable only if both the RI and SR
measurements are acceptable. But there is a practical aspect. The SR is typically much
shorter than the RI. Therefore, from statistical reasons, (4.2b) above is more likely to fail
for the SR than for the RI. It is up to the person responsible for the measurement to decide
whether or not the SR is acceptable for the preparation times.

4.2.4 The third criterion: Checking the standard deviations
 of the preparation times

The same recommendation for separating the logfile as in Section 4.2.2 applies here.
Checking the RI part for standard deviation of the preparation time is now explained.

The actual standard deviations of the preparation times have to be computed from the
logfile of all tasks of which the preparation times were started during the RI. Let
smeas(i,j) be the computed standard deviation of the preparation time of type j tasks
that were started during the RI by type i users. s(i,j) is the required standard
deviation of the preparation times of the type j tasks of type i users as defined in the
WPS. DELTAs(i,j) is the maximum allowed relative difference of the measured value
smeas(i,j) to the set value s(i,j). The actual relative difference is DIFFs(i,j) is
computed as follows:

 DIFFs(i,j) = (| smeas(i,j) - s(i,j)|)/ s(i,j) (4.3a)

Note: The vertical lines "|"..."|" mean the absolute value. The omission of this operator, in
Annex B.4.1 of ISO/IEC 14756 was unfortunately repeated in Annex B.4.3 . ■

DIFFs(i,j) must not exceed DELTAs(i,j) for all user types and all task types, i.e.
for all combinations of i and j .

The ISO standard allows the definition of DELTA values in the WPS which are different
for each combination of i and j. But in practice a unique value DELTAs value is mostly
used as cited in Section 2.9.2 . Therefore the following inequality uses DELTAs and not
DELTAs(i,j) .

 DIFFs(i,j) < DELTAs (4-3b)
 for all user types i = 1, 2,...,n
 and for all task types j = 1, 2,...,m

 55

If this is true the accuracy of the RTE is within the tolerances with respect to the standard
deviations of the preparation times of the tasks of the RI. Performing this check means to
compute n*m values DIFFs(i,j) and to compare each of them to DELTAs.

Example: In Fig. 2-8, Section 2.6, There are n=2 user types and m=4 chain types. 2*4=8
values have to be computed and compared to DELTAs .

The SR part of the logfile has to be checked analogously to the RI part. For the standard
deviations, the functioning of the RTE is acceptable only if both the RI and SR
measurements are acceptable. But there is a practical aspect. The SR is typically much
shorter than the RI. Therefore, from statistical reasons, (4.3b) above is more likely to fail
for the SR than for the RI. It is up to the person responsible for the measurement to decide
whether or not the SR is acceptable for the preparation times.

4.2.5 Remarks

While there is no doubt about how to calculate a mean value, various methods can be
used for the standard deviation (so-called estimations). The method used in Annex B.5 of
ISO/IEC 14756 is as follows.

Let x1, x2,...,xN be the set of N samples. The ISO method uses the following
formula for the estimation of the standard deviation sm(N) of this set of samples.

 N

 sm(N) = (1/N)* (xk - mm(N))2 (4.4)
 k=1

where

 N

 mm(N) = (1/N)* xk (4.5)
 k=1

is the mean value of the N samples .

4.3 Checking the statistical significance of the measurement results

4.3.1 Rationale for this check

Due to random preparation times and random choice of chain types, an ISO-type
measurement is non deterministic. Additional influences are microbial differences in
hardware operation, such as hard disc response times or network transmission times.
Whenever a data processing system is driven by an ISO-type RTE timing of all events is
random. Therefore the measured completion times vary by a certain amount. They are
random variables. No measurement of the same SUT and the same ISO-type workload
delivers exactly the same result. Each measurement result is an approximation of the

 56

unknown true value. The question is: how good is this approximation ? An answer to this
question may be found in the field of mathematical statistics, which offers statistical tests.
There are many test methods. In the ISO standard a test suited to the actual problem is
chosen.

4.3.2 The test

The ISO standard uses a so-called sequential test. To keep it simple this test is not applied
to all details or all computed performance values. It is restricted to the mean execution
time values. The philosophy behind this decision is that the most important performance
values are computed from the execution times. And it is assumed that all performance
values are significant if the execution time mean values (computed from the logfile) are
statistically significant. The chosen test has to be performed separately for the execution
times of each of the task types.

There are m task types. The test has to be performed for each task type either after the
measurement or parallel to it. The test takes samples of the response times. An indicator
"OK" or "NOT OK" shows for which of the task types the required statistical significance
is achieved.

For those who have a good knowledge of mathematical statistics the test is easy to
understand. "OK" indicates that the test was successful with respect for the task type
under consideration. Successful means that the confidence interval "TME + d" covers
the (unknown) true value. TME is the mean value computed from the samples. d is the
half-width confidence interval. The test result ("covers" or "does not cover") is valid with
a probability of 1-ALPHA where ALPHA is the confidence coefficient.

For those who are not familiar with mathematical statistics there follows an illustrative
interpretation. The confidence interval can be interpreted as the accepted measurement
error.

Example: In the WPS d = 1.0 sec was defined and TME = 4.9 sec has been computed
from the logfile. "OK" coming from the test can be interpreted as the following message:
"The (unknown) real mean value is within 4.9 + 1.0 seconds". "NOT OK" means that the
real mean value does not lie within the cited interval. The message coming from the test
has some uncertainty. The probability of it being correct is 1-ALPHA . For instance, if in
the WPS ALPHA = 0.05, the message "OK" means that with a probability of 95% TME is
within the confidence interval TME + d . There is a 5% chance that it is not. See Section
2.9.3 for advice on setting ALPHA and d .

Please note that this explanation is only illustrative and not valid in a strict mathematical
sense.

The detailed procedure of the test is described in Annex B.6 of ISO/IEC 14756. The test
was developed and published by the University of Bonn (Germany) in about the 1980s. In
1991 it was included in "Part 1" of [DIN01]. In 1994 it appeared in the book [DIRLE02]
in which also programs for performing the test are published.

 57

Such programs are also contained in the ISO/IEC 14756, Annex E.6 and a program
executing the test is also contained in the DEMO system (see the CD which is part of this
book).

The test is described shortly as follows. Its steps have to be performed repeatedly. Let xk
be the k-th sample.

Step 1 (initial step): Set N to 2
Step 2: Compute the mean mm(N) of the first N samples
 according to equation (4.5).
Step 3: Compute sm(N) of the first
 N samples according to equation (4.4).
Step 4: Compute the variance

 var(N) = (sm(N))2 . (4.6)

Step 5: Check if

 ((U(ALPHA)/d)2 * var(N)) > N . (4.7)

 If yes then increase N by 1 and go to Step 2;
 if no then the test is finished having the result "OK".

If the test does not result with OK when all samples are used then this means "not OK".
U(ALPHA) is the so-called u1-ALPHA/2-quantil of the standard normal distribution
N(0,1); for this quantity see ISO/IEC 14756 or statistic handbooks. ALPHA is the
confidence coefficient as defined in the WPS. d is the half-width confidence interval as
defined in the WPS.

4.3.3 Application of the sequential test

The test has to be applied to the tasks started within the RI. If the logfile has been
separated into 2 parts, as recommended in Sections 3.4 and 3.5 then the sequential test has
to be applied to the RI part of the logfile.

The application of the test is easy. For task type j proceed as follows.

Input to the test are the values of ALPHA and of d(j) which are to be taken from the
workload. Additional input is the set of statistically independent execution time samples
of task type j . For simplicity all measured execution time values of the RI of task type j
in their chronological order are taken as samples. Rationale: In practice, due to the
complexity of the events in the SUT, you can assume a sufficiently statistical
independence of the execution times in spite of taking them in chronological order. In a
mathematical sense there is no statistic independence. But experience shows that this
approximation is usually acceptable in the field of ISO-type performance measurements.

For checking the overall significance the test has to be executed by a program for each of
the m task types. If all m tests deliver "OK" the statistical significance of the measurement
is sufficient. If at least one task type has "NOT OK" the measurement is not acceptable,
and it has to be repeated.

 58

There are many reasons for a "NOT OK". A typical reason could be "too few samples".
I.e. the RI was too short. A new measurement having a longer RI has to be performed.
Another reason could be that the SUT was severely overloaded with execution times
fluctuating strongly and perhaps periodically. This could be a situation in which
significant execution time mean values and consequently performance values do not exist.

4.3.4 Fast computation of mean value and variance

The mean value mm(N) and variance var(N) have to be computed in each run through
the loop of the test. This needs the more time the larger N is. To solve this problem the
author developed a method for faster computation and published it in [DIRLE02]. The
method uses recursive formulae for computing mean and variance as follows.

Let x1, x2,...,xN+1 be the set of N+1 samples and mm(N) the mean value of the first
N samples. The mean value mm(N+1) can be computed by the formula

 mm(N+1) = (N*mm(N) + xN+1)/(N+1) . (4.8a)

The start condition for this recursive formula is

 mm(1) = x1 . (4.8b)

The variance of N+1 samples can, using equations (4.4) and (4.6) be written as

 var(N+1) = qs(N+1) / (N+1) , (4.9)

where qs(N+1) is

 N+1
 qs(N+1)= (xk - mm(N+1))2 . (4.10)
 k=1

This term can also be computed by the following formula:

 qs(N+1) = qs(N) + (xN+1)2 - (N+1)*(mm(N+1))2 + N*(mm(N))2

 (4.11a)

The start condition for this recursive formula is

 qs(1) = 0 . (4.11b)

Using the formula (4.8a) for computing mean values and (4.11a) and (4.9) for variance is
much faster than using the generic formulae (4.5) and (4.4). This method is implemented
in DEMO.

 59

4.4 Summary of the validation procedure

The validation procedure has three parts.

Part 1: Check the correct working of the SUT
 (see Section 4.1)
Part 2: Check the correct working of the RTE.
 There are three criteria.
 ● Criterion 1 checks the n*u relative chain frequencies
 (see Section 4.2.2).
 ● Criterion 2 checks the n*m preparation mean times
 (see Section 4.2.3).
 ● Criterion 3 checks the n*m preparation time standard deviations
 (see Section 4.2.4).
Part 3: Check of the statistical significance of the m mean execution times
 (see Section 4.3.3).

Parts 2 and 3 can only be performed when the measurement run is completed (i.e. only
after t3).

Checking according to Part 1 can either be performed after the end of the measurement
(t3) or it can be performed "dynamically" during the measurement run.

Such a dynamic check works as follows. Each computational result is checked as soon as
it is delivered by the SUT. The check has to be performed by the RTE. It cannot be
performed by the SUT itself because this would produce an additional component of the
workload. Implementing a dynamic check typically increases the RTE CPU loading but
avoids storing the computational results. It is recommended to not use dynamic check
without storing computational results though ISO/IEC 14756 allows it.

Part 1 is usually performed after the measurement run. It can then be performed either by
the RTE or by the SUT itself or by another computer. The execution time of Part 1 is of
little importance, as long as it is not too excessive.

A diagram of the checking course is shown in Fig. 4-1 .

 60

 Fig. 4-1 The ISO-type validation of a measurement

Start

Measurement run
(t to t)0 3

Validation Part 1
Prove correct work of SUT
(checking the computational
 result file)

OK

OK

Validation Part 2
Prove accuracy of RTE
(checking the logfile for keeping
 DELTA values)

OK

Validation Part 3
Prove statistical significance
of measurement results
(checking of execution mean times
 for keeping ALPHA and d(j))

OK

Computation of performance
values and of rating values

Successful end

Debug
SUTnot OK

Improve
RTEnot OK

Find
reasonsnot OK

Invalid measurement

(For instance)
Lengthen rating

interval

(Repeat measurement)

not OK

OK

OK

not OK

(Reason
found)

(Reason
not

found)

 61

4.5 Exercises

Preparation:
Use the WPS of Chapter 3, Section 3.7, Exercise 2 and the same task lists. But change the
activity types to TT1c, TT2c, TT3c . These UNIX shell scripts are as follows:

Shell TT1c:
#!/bin/sh

Shell procedure TT1c
mkdir $$
cd $$
Creating a directory having a unique name,
which is the actual UNIX process number.
echo TT1.$$ > TT1-Res
cat TT1-Res ../infile1 >> ../TT1.out
Bringing the name of the called shell
and the actual UNIX process number - as
an identifier of the run - to the output file.
sleep 1
Simulates program runtime
rm -f *
cd ..
rmdir $$
Cleaning temporary files and the directory.

== End of procedure ==

Explanation: This shell produces two lines and adds them to the output file "TT1.out".
The first line contains the text "TT1.xxxx" where xxxx is the UNIX process number.
This number is a unique identifier of the task executed. The second line contains the text
stored in the input file "infile1". (This text is "Printing infile1"). The shells
TT2c and TT3c work analogously.

Note (concerning DEMO): The names of shells, i. e. the input strings of activity types can
be chosen arbitrarily, but due to the actual file formats used by the module "demo2din"
they are limited to a maximum of 6 characters. For using longer strings, demo2din and
its co-operating DEMO modules would have to be rewritten. ■

Shell TT2c:
#!/bin/sh

Shell procedure TT2c
mkdir $$
cd $$
Creating a directory having a
unique name,
which is the actual UNIX process
number.
echo TT2.$$ > TT2-Res
cat TT2-Res ../infile2 >> ../TT2.out
Bringing the name of the called
shell
and the actual UNIX process number
- as
an identifier of the run - to the
output file.
sleep 2
Simulates program runtime
rm -f *
cd ..
rmdir $$
Cleaning temporary files and the
directory.

== End of procedure ==

Shell TT3c:
#!/bin/sh

Shell procedure TT3c
mkdir $$
cd $$
Creating a directory having a unique
name,
which is the actual UNIX process number.
echo TT3.$$ > TT3-Res
cat TT3-Res ../infile3 >> ../TT3.out
Bringing the name of the called shell
and the actual UNIX process number - as
an identifier of the run - to the output
file.
sleep 3
Simulates program runtime
rm -f *
cd ..
rmdir $$
Cleaning temporary files and the
directory.

== End of procedure ==

 62

These shells are found in the directory
 CD/Sol-files/Mment-ch4/OSCPs-TTxc-shells/ .
The input files are found in the directory
 CD/Sol-files/Mment-ch4/input-files-TTxc-Mment/ .

Perform the user emulation by manually starting the DEMO module "demo". Create the
logfile by manually starting the module "demo2din".

Exercise 1: Check the correct working of the RTE

Part 1
Analyse the logfile. For its file format see file
 CD/DEMO-20/DEMO-manual/file-formats.txt .
Check the RI (i.e. the interval t1 to t2) to see whether the
DELTAq criteria are fulfilled.

Part 2
Check the RI to see whether the DELTAh and DELTAs criteria are fulfilled. You can
perform the computations manually or you can start the DEMO module "STK.CON".

Exercise 2: Check the correct working of the SUT

Check whether all submitted tasks had been executed. Check the correctness of the
computational results.

Exercise 3: Check the statistical significance

Set ALPHA = 0.20 and drel = 0.25 . Check, by manually starting the DEMO module
"DINREA", whether there is statistical significance.

Exercise 4: Demonstration of the incorrect working of the SUT

Repeat the measurement but apply the following modification: Before starting the
measurement login to the SUT as an additional "user2". Insert intentionally the
following error: While the measurement runs in the RI delete by using the UNIX command
"rm" the file "infile2" in the home of "user2". After finishing the measurement
check manually if the stored computational results of all tasks of the RI and the SR exist
and are correct.

Exercise 5: Statistical significance when using more rigorous
 values of the criteria

Use the logfile of the measurement of Exercise 1 that consists of the files DIN.DAT and
ZEIT. Reduce stepwise ALPHA and drel. Check for each step - by starting manually the
DEMO module "DINREA" - whether there is statistical significance.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section4-5.pdf .

 63

5 Computing the ISO performance values from the
 measurement result file (logfile)

5.1 Overview of the ISO performance terms

Performance P is a triple of three terms

 P = (B, TME, E) (5.1)

where

 - B is the (total) throughput vector
 - TME is the mean execution time vector
 - E is the timely throughput vector

It is important to understand that performance is the set of these three terms. The reason is
that no term can be computed from the others. In the general case of the SUT being a black
box the three terms are independent of each other.

These terms are determined for each task type. I.e. each is a tuple of as much values as
there are task types. For instance, for m = 4 task types the performance is described by the
three terms each subsuming four subterms, i.e. by 12 subterms. In general the following
holds:

 B = (B(1), B(2) ,..., B(m)) (5.2)
 TME = (TME(1), TME(2),...,TME(m)) (5.3)
 E = (E(1), E(2) ,..., E(m)) (5.4)

P consists of 3*m subterms. This is a complex but very powerful definition of
performance.

The values of P are computed from the logfile records, concerning the rating interval (RI).
If following the recommendation of Sections 3.4 and 3.5 the logfile is separated into two
parts. For the computation of P is only the RI part of the logfile is needed.

5.2 The "total throughput vector" B

B is the set of m terms B(j) where j is the current number of the task type. Every B(j)
refers to the duration TR of the RI

 TR = t2 - t1 . (5.5)

B(j) is the number of type j tasks submitted to the SUT by the RTE per time unit.

 64

 B(j) = b(j) / TR (5.6)

In the above formula b(j) is the total number of tasks of type j submitted by all emulated
users to the SUT during the RI. The set of the m terms B(j) yields the throughput vector
as defined in equation (5.2) above.

The computation of B is simple. Analyse the RI part of the logfile. Counting the number of
tasks of each task type yields the m values b(j). According to equation (5.6) above each
of these values has to be divided by TR . This yields the m values B(j). This set of values
is the throughput vector B as defined in equation (5.2) .

5.3 The "mean execution time vector" TME

TME is the set of m terms TME(j) where j is the current number of the task type. Every
TME(j) refers to the RI and TME(j) is the mean execution time of all type j tasks
submitted to the SUT by all emulated users within the RI.

TME(j) is simple to compute. Analyse the RI part of the logfile. The execution times of all
type j tasks within the RI. These times are tET(j,1), tET(j,2),..... . The total
number of those values is b(j). Therefore the last element in the series will have the
symbol tET(j,b(j)). Adding them and dividing by b(j) yields the mean value
TME(j).

 TME(j) = ((tET(j,1) + tET(j,2) + ...+tET(j,b(j))) / b(j) (5.7)

Performing this simple procedure for all m task types yields the "mean execution time
vector TME in equation (5.3) above.

5.4 The "timely throughput vector" E

5.4.1 The principle of E

Although, E is a somewhat unusual term, it is easy to understand.

As explained in Section 5.2 b(j) is the number of type j tasks submitted to the SUT
during the RI. With regard to the according timeliness function (see Section 2.5) some
tasks may not have been executed in time. Let e(j) be the total number of timely
executed tasks of type j tasks during the RI. The maximum value of e(j) may be
achieved if all type j tasks have been executed in time. Therefore,

 e(j) < b(j) . (5.8)

 65

The "timely throughput" E(j) of type j tasks is the number per time unit. Therefore,

 E(j) = e(j) / TR . (5.9)

From this definition and equation (5.8) above follows that

 E(j) < B(j) (5.10)

This inequality is the mathematical representation of the fact that the rate of timely
executed tasks cannot exceed the total rate of tasks (with respect to j type tasks).

The procedure for computing e(j) (for getting E(j) by use of equation (5.9) above) is
somewhat sophisticated. It is explained in the Section 5.4.2 .

5.4.2 Computing e(j)

The procedure for computing e(j) was developed in the 1980s by the performance
subgroup of the German National Standardisation Committee DIN. It was adopted for the
German National Standard DIN 66273 [DIN01] in the early 1990s. It appeared also in
[DIRLE02] in 1994.

This procedure is fully explained in ISO/IEC 14756, Annex B.3. You are advised to read
this annex. A short introduction is given below as an example.

We consider and define a task type. Its timely function TF (see Section 2.5) has z = 2
time classes with the following values:

 TF: z = 2
 k gT(k) rT(k)
 1 5.00 sec 0.80
 2 10.00 sec 1.00

Fig. 5-1 Example values of a timeliness function having two time classes

Its time classes are:
 class 1: 0.00 to 5.00 seconds
 class 2: 5.00 to 10.00 seconds

The total number of tasks (of the considered task type) submitted to the SUT during the RI
is assumed to be b = 5. The timeliness function implies that in the first time class there
should be
 b*rT(1) = 5*0.80 = 4 tasks ,
i.e. 80% of the tasks. In the second time class there should be
 b*(rT(2) - rT(1)) = 5 * (1.00 - 0.80) = 1 task ,
i.e. 20 % of the tasks. These numbers are the reference values:

 bRefClass(1) = 4
 bRefClass(2) = 1

 66

For computing the number of tasks counted as "in time" we sort the execution time values
and put them into the time classes. Then we compare the number in each class with its
reference value.

Does the actual number of execution times in a class not exceed the reference value, then
the actual number is to be counted for this class. If this number is greater than the reference
value then the reference value is to be counted for this class; additionally any surplus tasks
are put into the next class as a bonus of timely tasks.

This counting has to be performed for each class, beginning with the first class, then for the
second class and so on. The total number of timely executed tasks is the sum of the counts
for each class. Four cases are shown below as examples.

Case 1
Measured times (sec) : 2.0, 9.5, 1.0, 3.0, 10.1
Sorted into class 1 : 3 tasks (values 2.0, 1.0, 3.0)
Sorted into class 2 : 1 task (value 9.5)
Counted for class 1 : 3 tasks (less than the reference value 4)
Counted for class 2 : 1 task (equals the reference value 1)
Timely executed : e = 3 + 1 = 4

Case 2
Measured times (sec) : 2.0, 4.5, 1.0, 10.3, 3.0
Sorted into class 1 : 4 tasks (values 2.0, 4.5, 1.0, 3.0)
Sorted into class 2 : none
Counted for class 1 : 4 tasks (equals the reference value 4)
Counted for class 2 : none (less than the reference value 1)
Timely executed : e = 4 + 0 = 4

Case 3
Measured times (sec) : 2.0, 8.5, 1.0, 3.0, 7.0
Sorted into class 1 : 3 tasks (values 2.0, 1.0, 3.0)
Sorted into class 2 : 2 tasks (values 8.5, 7.0)
Counted for class 1 : 3 tasks (less than the reference value 4)
Counted for class 2 : 1 task (1 is the reference; if more than
 one are in the class only one can
 be counted. There is no upper
 class which could use the
 overflowing one; it is lost.)
Timely executed : e = 3 + 1 = 4

Case 4
Measured times (sec) : 2.0, 4.5, 1.0, 3.0, 4.1
Sorted into class 1 : 5 tasks (all values)
Sorted into class 2 : none (no value)
Counted for class 1 : 4 tasks (4 is the reference; if more than 4
 are in the class only 4 can be
 counted; the excess value goes to
 the next class as a bonus)
Counted for class 2 : 1 task (1, this is the bonus from class 1)
Timely executed : e = 4 + 1 = 5

 67

It is important to understand that this algorithm only counts the number of timely executed
tasks. It does not decide individually whether a task is executed timely, except for those
beyond the uppermost time class. They are clearly tasks which are not timely.

The algorithm is implemented in DEMO. For subroutines see [DIN01], [DIRLE02] and
[ISO14756].

5.4.3 The "timely throughput vector" E

The number e(j) of timely executed type j tasks is determined according to Section 5.4.2.
The timely throughput E(j) of type j tasks is to be computed according to equation (5.9)
above. Performing this for all m task types yields the "timely throughput vector" E as
defined in equation (5.4) above.

5.5 Exercises

Exercise 1: Computing P from the logfile

Compute P (performance) manually from the logfile below. It consists of the two files
ZEIT and DIN.DAT. It was produced by the measurement of Exercise 1, Section 4.5 .
These files are found in directory
 CD/Sol-files/Mment-ch4/ARCHIVE-TTxs-Mment/ .

For the sake of simplicity overlook that this logfile was produced by applying so-called
individual rating intervals and use for duration TR of the RI the mean value of the
individual rating intervals of the 2 users.

Apply the following timeliness function TF1 for all task types:

 TF1 : z = 2
 k gT(k) rT(k)
 1 1.5 sec 0.80
 2 2.5 sec 1.00

 file ZEIT

 1 1 116.427 t_1
 2 1 112.521 t_1
 *
 1 1 233.050 t_2
 2 1 225.125 t_2
 *

 68

file DIN.DAT

 1 1 1 1 1 116.449 124.467 125.509 0 X
 2 1 1 1 2 125.513 135.544 137.573 0 X
 3 1 1 2 2 137.576 154.599 156.618 0 X
 4 1 1 2 3 156.622 166.637 169.668 0 X
 5 1 1 1 1 169.672 188.686 189.745 0 X
 6 1 1 1 2 189.748 195.780 197.799 0 X
 7 1 1 1 1 197.803 202.859 203.884 0 X
 8 1 1 1 2 203.888 211.903 213.925 0 X
 9 1 1 1 1 213.928 214.943 215.990 0 X
 10 1 1 1 2 215.994 231.025 233.048 0 X
 11 2 1 2 2 112.544 112.568 114.616 0 X
 12 2 1 2 3 114.619 121.646 124.675 0 X
 13 2 1 1 1 124.679 140.695 141.721 0 X
 14 2 1 1 2 141.724 156.738 158.778 0 X
 15 2 1 2 2 158.782 165.841 167.873 0 X
 16 2 1 2 3 167.877 174.905 177.933 0 X
 17 2 1 2 2 177.937 179.951 181.973 0 X
 18 2 1 2 3 181.977 193.987 197.029 0 X
 19 2 1 1 1 197.032 211.060 212.082 0 X
 20 2 1 1 2 212.086 223.102 225.123 0 X
*

Note: It is expected that your measurement produces results that differ a little from those
above because of differences due to probabilistic events in detail. ■

Exercise 2: Similar workload (slower users)

Repeat the measurement of Exercise 1, Section 4.5 but double all preparation times in the
task lists. Compute P manually from the logfile. For the sake of simplicity overlook - as in
Exercise 1 - that the logfile is produced by applying so-called individual rating intervals.
For duration TR of the RI use the mean value of the rating intervals of the 2 users. Apply
the timeliness function TF1 above for all task types. Compute P and explain all changes.

Exercise 3: Similar workload (faster users)

Repeat the measurement of Exercise 1, Section 4.5 but halve all preparation times in the
task lists. Compute P manually from the logfile. For the sake of simplicity overlook - as in
Exercise 1 - that the logfile is produced by applying so-called individual rating intervals.
For duration TR of the RI use the mean value of the rating intervals of the 2 users. Apply
the timeliness function TF1 above for all task types. Compute P and explain all changes.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section5-5.pdf .

 69

6 The Urn Method

6.1 General

As explained in Section 3.3, the measurement consists of three phases:

 ● StP (stabilisation phase)
 ● RI (rating interval)
 ● SR (supplementary run).

At the end of StP (time t1) a user is mostly not at the start of a new chain. He is in a
random position within his chain. At the end of the RI (time t2) a similar situation occurs.
At this time the users are not at the ends of their chains. In consequence the RI contains
typically for all users incomplete chains. This makes it difficult to satisfy the RTE
correctness criteria DELTAq, DELTAh and DELTAs . To satisfy these criteria a very long
RI would be necessary. Shortening the RI is possible by use of the so-called individual
rating intervals (see Section 6.2 below). This method has the following advantage: the RI
includes only complete chains.

The use of individual rating intervals is necessary for the application of the so-called urns
(see Sections 6.3 ff.). The use of such urns solves the problem of finite random sequences
which was discussed in Section 3.6.3. It was pointed out that in general the relative
frequencies of a finite random chain sequence differ from the required values in the WPS.
Also the mean values and standard deviations of a finite number of preparation times differ
from the values required. The shorter the RI and random sequence, the greater are the
differences. The concept of "urns" solves this problem. It yields the same relative chain
frequencies as in the WPS, and also for the preparation time mean values and their
standard deviations.

The concept of "urns" including the concept of "individual rating intervals" is the so-called
Urn Method, the basics of which were developed by the author who published it in
[DIRLE01]. It appeared again in [DIRLE02]. The Urn Method is explained in the
following sections.

6.2 Introduction to the concept of individual rating intervals

6.2.1 Defining the individual rating intervals

The ISO measurement procedure as explained in the previous chapters uses a common RI
for all users, lasting from t1 to t2 . Contrary to this now for each user a new, individual RI
has to be defined as follows.

The time t1 is the planed end of the StP and the beginning of the RI. If at this moment the
actual task of a particular user has not been fully processed, then the start of this new
individual RI (time t1ind) has to be delayed. This t1ind can only be set when the current
task is finished. However this time is inappropriate if the task just processed was not the
last task in its chain. Because further tasks in this chain have still to be processed, t1ind
needs to be delayed still further until it coincides with the end of the last task in the chain.
Thus the new individual RI starts with processing of a new chain, i.e. with the completion

 70

of the last task in the current chain. If the last task of the current chain has the task mode
NOWAIT then the individual RI starts when this task is submitted.

An analogous situation happens at t2. The time t2 is the planed end of the RI. For each
user the end of the new individual RI (time t2ind) has to be delayed. This t2ind has to be
set when the processing of the last task of the current chain has finished, i.e. with the
completion of its last task. If the last task of the current chain has the task mode NOWAIT
then the individual RI ends when this task is submitted.

In this way an individual RI contains only complete chains.

Using such an individual RI for each of the emulated users is necessary for achieving
absolute correctness with respect to the DELTAq criterion. Additionally it ensures that no
incomplete chains arise for the computation of the performance values.

The duration of the individual rating interval of a particular user is

 TRind = t2ind - t1ind (6.1)

6.2.2 Modifying the computation of performance values

As a consequence of using individual RIs, the computation of performance vectors B, TME
and E, presented in Chapter 5, have to be modified.

6.2.2.1 Computation of B (total throughput)

As t1 and t2 have been superseded by t1ind and t2ind, the number of tasks of each
task type have as a first step to be counted separately for each user from its individual RI.
These numbers are named bind(j) where j is the task type number.

The total number of users is Ntot (see equation (2.4) in Section 2.6). Consequently there
are

Ntot values bind(1), Ntot values bind(2),...., Ntot values bind(m).

Analogously to equation (5.6) in Section 5.2, we compute the individual throughput values
Bind(j), where j is the number of the task type and TRind is the individual RI of a
particular user:

 Bind(j) = bind(j) / TRind (6.2)

This yields

Ntot values Bind(1), Ntot values Bind(2), , Ntot values Bind(m).

 71

Then as a second step

 the Bind(1) values have to be totalled for all users, yielding B(1) and
 the Bind(2) values have to be totalled for all users, yielding B(2) and
 etc. and
 the Bind(m) values have to be totalled for all users, yielding B(m) .

This is the B vector.

6.2.2.2 Computation of TME (mean execution time)

The tasks for the computation of the mean execution times have to be taken from the set of
the Ntot individual RIs. Then the computation is the same as shown in Section 5.3. This is
the mean execution time vector TME.

Do not try to compute TME analogously as to B (as above), because doing so would
compute TME(j) as a mean of means. But the mean of means is not the mean of the
entirety.

6.2.2.3 Computation of E (timely throughput)

As t1 and t2 have been superseded by t1ind and t2ind, the tasks for the computation of
the timely throughput have as a first step to be taken separately for each user from its
individual RI. Then for each user the m numbers eind(j) of timely tasks (where j is the
number of the task type) have to be estimated according to Section 5.4.2. The total number
of users is Ntot. Consequently there are

Ntot values eind(1), Ntot values eind(2) and so on and Ntot values eind(m).

Analogous to equation (5.9) in Section 5.4.1, we compute the individual timely throughput
values Eind(j) where j is the number of the task type and TRind is the individual rating
interval of a particular user:

 Eind(j) = eind(j) / TRind (6.3)

This yields

Ntot values Eind(1), Ntot values Eind(2), , Ntot values Eind(m).

Then as a second step

 the Eind(1) values have to be totalled for all users, yielding E(1) and
 the Eind(2) values have to be totalled for all users, yielding E(2) and
 etc. and
 the Eind(m) values have to be totalled for all users, yielding E(m) .

This is the E vector.

 72

This is an illustrative description of the modified computation of the performance values
B, TME and E. For a more formal and detailed description see Section 6.5, which should
be used when programming an RTE with individual RIs.

6.2.3 Modifying the definition of the end of the SR

Using individual RIs implies a modified definition of t3 , the end of the SR. Analogous to
t2 we define an individual SR for each user the end of which is t3ind , i.e. the moment
when all tasks which were submitted before t3ind are finished. The duration TSind of the
individual SR of a particular user is

 TSind = t3ind - t2ind (6.4)

When all users have reached the end of their individual SRs this common time is t4 . The
recording of the logfile can be terminated and the RTE can be shut down, the logfile
having been saved.

6.2.4 Overlapping of individual RIs

The experience of many measurements using individual RIs is that they may overlap, but
not too much. ISO/IEC 14756, Clause 11.2, limits the amount of overlapping of the IRs as
follows:

 ● The time difference of the earliest and the latest t1ind shall
 not exceed 10% of TMR .
 ● The maximum TRind may not exceed 120% of TMR .
 ● The maximum TSind may not exceed 150% of the minimum TSind .

To check whether the overlapping satisfies ISO/IEC, Clause 11.2, the mean RI duration
TMR has to be computed from the individual RI durations TRind of all users.

6.3 Explaining the concept of "urns"

6.3.1 Toleration of the Urn Method by ISO/IEC 14756

Using individual RIs is the first step for solving the problems discussed in Section 6.1 . But
the following problem remains: the generation of chain sequences and the execution time
values by using a conventional random generator delivers pseudo-random sequences of
chains and pseudo-random values of preparation times. Their relative frequencies and
mean values differ from the predefined values in the WPS. This is unavoidable because the
sequences are of finite length, as already mentioned in Section 6.1 . Only if the RI is very
long can the measured values approximate the predefined values in the WPS.

The urn concept solves the problem of the differences. It eliminates the differences with
respect to the RTE correctness criteria DELTAq, DELTAh and DELTAs (see Section 4.2).
The urn concept, not being a part of ISO/IEC 14756 is not described there. But it does not

 73

conflict with the standard. Therefore it can be used for an ISO-type measurement. The only
prerequisite for the urn concept is the use of individual RIs. This concept is tolerated in the
ISO standard.

The Urn Method, being the combination of the individual RI concept and the urn concept
is also tolerated in the ISO standard.

6.3.2 The urns

The Urn Method uses pregenerated task lists (see Section 3.2). Although it would be
possible to implement the urn method for dynamic task generation, a typical application
uses pregenerated task lists. First we have to generate chain sequences, then task lists and
then preparation time values.

6.3.2.1 Generating chain sequences

The following example shows how the Urn Method generates a chain sequence. For q
values we choose the chain probabilities of user type 1 (see Fig. 2-14 in Sect. 2.7.5). The
values are

 q(1,1) = 0.10
 q(1,2) = 0.50
 q(1,3) = 0.40 .

From these values it is easy to see that the minimum number of chains which realises these
relative frequencies is 10. We take an urn and 10 balls. On one bowl is written "chain type
1". On five bowls is written "chain type 2". On four bowls is written "chain type 3". We
put these balls into the urn and shake it. Then we invite a good fairy to take at random one
ball out of the urn, the another, and so on. When the urn is empty the fairy has generated a
random sequence of 10 chain type numbers. The relative frequencies of chain types equal
exactly the q values above. Such a sequence is called "cycle". To get a longer sequence of
chain types we put the 10 bowls back into the urn and generate another sequence of 10
numbers to add to the first. So now we have generated a random sequence of 20 chain type
numbers. Alternately we can put two identical sets of 10 bowls into the urn and ask the
fairy to take all 20 out randomly. We see that the length of the RI can be 10 or 20 or 30 or
any multiple of 10 chains, that is, the length can be any number of cycles.

In the light of mathematical statistics, the randomness of these sequences is somewhat
reduced. The reason is that the relative frequencies of the bowls change when a bowl is
removed from the urn. But practice has shown that this small reduction of randomness has
no negative influence on the measured performance values.

6.3.2.2 Generating preparation time sequences

We can also use this concept of the urn for generation of random think time sequences, as
explained by the following example. We use the chain definitions of Fig. 2-12 in Section
2.7.4. In the 10 chains of a cycle there are 17 tasks as follows (see the example shown in
Fig. 3-1 in Section 3.1):

 74

 9 tasks of task type 1
 5 tasks of task type 2
 2 tasks of task type 3
 1 task of task type 4

According to the 4 task types we need 4 urns.

Into the first urn we put 9 bowls. On each of them has been written a preparation time
value. We choose these 9 values so that their mean value equals the h-value in the WPS.
Additionally we choose them so that their standard deviation equals the s-value in the
WPS. We shake the this urn and ask the fairy again to do her work. When the urn is empty
a random sequence of 9 think times is generated. The mean value and the standard
deviation of this sequence exactly equals the required value in the WPS.

Similarly, we can also generate the think times of the tasks of types 2 to 4 using the next
three urns. When the fairy comes to the 4th urn, she can have a rest, as the urn contains
only one ball and we know the preparation time of this task.

To realise the urn method we need for each user one chain urn and m think time urns. For a
large number of users the total number of urns can be large. But this causes no problems.
Each urn in the RTE task list generator program is realised by a data structure such as a
little array. The total amount of storage needed is no problem for a present-day computer.

6.3.3 Generation of a set of preparation time values
 for filling a preparation time urn

For generating the preparation time sequences (as explained in Section 6.3.2.2) the
following problem has to be solved: Y non-negative numbers

 x1, x2,.....,xY

have to be found. The mean value of this set has to equal the defined value h and the
standard deviation has to be equal the defined value s.

As ISO/IEC does not specify preparation time distributions, one is free to solve the
problem as one likes. A solution, involving a unique distribution type, was developed by
the author in the early 1990s and published in [DIRLE02]. The solution can be applied
here.

Compute the value ∆ using the formula (6.5):

 ∆ = (s * 3) / (Y2 - 1) (6.5)

If Y is an odd number, the set of the Y numbers is

 h-(Y-1)*∆ ,... ,h-(4*∆), h-(2*∆), h, h+(2*∆) ,h+(4*∆) ,... ,h+(Y-1)*∆ .

 (6.6a)

 75

If Y is an even number, the set of the Y numbers is

 h-(Y-1)*∆,... , h-(3*∆), h-∆, h+∆, h+(3*∆),... , h+(Y-1)*∆ . (6.6b)

The proof is given in [DIRLE02]. The formula to be used for the standard deviation is
given in (4.4) in Section 4.2.5 .

One must note that a unique distribution having a positive mean h can contain negative
values in case of the standard deviation s is too large. Therefore defining too big s values
in the WPS yields negative preparation times. This has to be checked before filling the
urns. If there are negative preparation times the task list cannot be executed. The s values
have to be reduced and new task lists generated. This difficulty can be avoided as follows:
The leftmost terms of (6.6a) and (6.6b) must not be negative. Solving these inequations
yields

 - if there are Y=2 values, then s < h ,
 - if the number Y of values is very large, then s < 0.57 * h .

Therefore as a rule of thumb for the Urn Method, do not set s greater than 50% of the
mean value h.

6.4 Experiences from applying the Urn Method

The particular advantage of the Urn Method is that the DELTA criteria are fulfilled and
also that the RIs are as short as possible. The urn method is easy to use when applying
pregenerated task lists (see Section 3.2). To realise the urn method for dynamic generation
of tasks would be possible but would imply a very large amount of work. Additionally it
would need an extremely fast computer for RTE.

Using the urn method yields task lists which fulfil the ideal zero DELTA values. In
practice DELTAq = 0 is achieved if the RTE algorithm is correctly implemented. The
preparation time values and their deviations usually differ from their ideal values. This is
not a consequence of the Urn Method but it is a technical hardware problem. The RTE has
to submit the tasks quickly in real time according to the sequence written in the task list.
But it could have delays due to insufficient CPU speed, and the speed of its data lines, etc.
These influences would lengthen the actual preparation times.

For writing an ISO-type RTE the Urn Method is strongly recommended. There are no
disadvantages. But it would not always be necessary to rewrite an non-urn ISO-type RTE.
If, for instance, the workload is characterised by many users submitting only small tasks
quickly then a large number of "samples" is produced. A measurement using a non-urn
ISO-type RTE can then achieve good DELTA values. This is due to the large number of
tasks that are processed in a short measurement duration. But if such a workload has
additional users submitting a few "large tasks" then the use of the Urn Method would be
very advantageous.

The DEMO system, contained on the CD as part of this book, uses the Urn Method
including the method of Section 6.3.3 . The reader is encouraged to look into the programs
to better understand how to implement the Urn Method.

 76

6.5 Formal and detailed description of the modifications for
 computing the performance values

When using the Urn Method, individual RIs must be used. This implies a modification of
the computation of the performance values, which has been described illustratively in
Section 6.2.2 . It is now explained more formally in accordance with the presentation in
Chapter 5.

6.5.1 Total throughput vector B

Because there is no common RI, it is recommended that there should be a separate logfile
for each of the users (individual logfiles). Each logfile has an RI part and SR part as
recommended in Sections 3.4 and 3.5 . We have to compute the throughput values
separately from the RI part of each logfile, according to the individual RI. Let v be the user
number, (current number within all Ntot users; for Ntot see equation (2.4) in Section 2.6).
t1ind(v) and t2ind(v) are the start and end of the individual RI of the v-th user. Its
duration is

 TRind(v) = t2ind(v) - t1ind(v) . (6.7)

Let bind(v,j) be the number of type j tasks submitted by user v during his RI. This
value can be obtained from the RI part of his individual logfile. The throughput of this
user, with respect to j type tasks is

 Bind(v,j) = bind(v,j) / TRind(v) . (6.8)

The total throughput of j type tasks is

 B(j) = Bind(1,j) + Bind(2,j) + ... + Bind(Ntot,j) . (6.9)

The m values B(1),...,B(m) are the B vector (see equation (5.2) in Section 5.1).

6.5.2 Mean execution time vector TME

As explained in Section 6.2.2.2 the computation of TME is not completely analogous to that
of B. Let tETind(v,j,1) be the execution time of the first j type task in the R part of
user v in its individual logfile. Let tETind(v,j,2) be the analogous value of the second
j type task and so on. The total number of such values is bind(v,j) (see Section 6.5.1).
In general is tETind(v,j,x) the execution time of the x-th task of the j-th task type in
the RI part of the individual logfile of the v-th user. The sum of the execution times of all
j type tasks is

 77

 sumET(j) =

 + tETind(1,j,1)+ tETind(1,j,2)+... tETind(1,j,bind(1,j))
 + tETind(2,j,1)+ tETind(2,j,2)+... tETind(2,j,bind(2,j))
 +
 +
 + tETind(Ntot,j,1)+ tETind(Ntot,j,2)+... tETind(Ntot,j,bind(Ntot,j))

 (6.10)

Although this formula appears complex and difficult to understand, this is not really so.
The variables v, j and x can be used directly as array indices and the sum can be
programmed using nested loops.

Now we can compute the TME of type j tasks:

 TME(j) = sumET(j) / (bind(1,j) + bind(2,j) + ... bind(Ntot,j)

 (6.11)

The m values TME(1),...,TME(m) are the TME vector (see equation (5.3) in Sect. 5.1).

6.5.3 Timely throughput vector E

Let eind(v,j) be the number of timely executed j type tasks of user v. It can be
computed (by use of the algorithm which was explained in Section 5.4.2) from the
bind(v,j) type j execution times in the RI part of the individual logfile of user v.

The individual number of timely executed j type tasks of user v per time unit is

 Eind(v,j) = eind(v,j) / TRind(v) . (6.12)

This is the timely throughput of j type tasks of user v.

The sum of the Eind(v,j) values of all users is the total timely throughput of j type
tasks:

 E(j) = Eind(1,j) + Eind(2,j) + ... + Eind(Ntot,j) . (6.13)

The m values E(1) ,..., E(m) are the E vector (see equation (5.4) in Section 5.1).

6.5.4 Explanations

Sections 6.5.1 to 6.5.3 concern the use of individual rating intervals. As they have to be
used and programmed for the Urn Method, this is why the computation of the performance
values is explained again here in more detail than in Section 6.2.2 .

 78

But it is important to understand that individual RIs can also be used without urns. In this
case the performance values have to be computed according to Sections 6.5.1 to 6.5.3 and
not as described in Sections 5.2 to 5.4 .

A program for the computation of the performance values according to Sections 6.5.1 to
6.5.3 can also be used, and works correctly, without individual RIs, i.e. if all t1ind times
are the common time t1 and all t2ind times are the common time t2 .

6.6 Exercises

Preparation:
a) Write down the WPS used in Exercise 1 of Section 5.5 and convert it to DEMO format.
b) Make sure that the task list generation function of DEMO is installed.
c) Generate task lists by DEMO that have the same length as in Sections 4.5 and 5.5 (i.e.
 10 tasks in each of RI, StP and SR).
d) Perform the measurement.

Exercise 1: Correctness of RTE working when using urn-generated task lists

Use the recommended values in Section 2.9.2 for the criteria, i.e.
 DELTAq = 0.01, i.e. "maximum 1%"
 DELTAh = 0.02, i.e. "maximum 2%"
 DELTAs = 0.20, i.e. "maximum 20%"
Check whether these criteria are fulfilled.

Exercise 2: Differences in P

Compute P. Compare it with the performance values of the measurement of Exercise 1,
Section 5.5 (that used the same workload but not the Urn Method). Explain the differences.

Exercise 3: ISO's three overlap criteria of the individual rating intervals

Check for the measurement of Exercise 1 whether the three overlap criteria are fulfilled
(see Section 6.2.3).

Exercise 4: Using a longer RI

Repeat the measurement with a 4-times longer RI. Determine the DIFFh values and
compare them with those of Exercise 1.

Exercise 5: Using a more precise RTE

Repeat the measurement of Exercise 4 but use the improved "demoshell". This module
is found as file
 CD/DEMO-20/DEMO-sw/user-shells/demoshell-new .
Note: This module expects the "sleep" command of the operating system of your SUT to
accept non-integers for argument. If this is not the case, you cannot perform Part 2 of this
exercise with DEMO. ■

Solutions
For solutions see file CD/Solutions/Solutions-Section6-6.pdf .

 79

7 Rating the measured performance values

7.1 The principle of the ISO rating

The measured performance P = (B, TME, E) is a set of physical values. The user of
the IP system is interested in these values but much more whether they satisfy the user
entirety requirements.

Therefore ISO/IEC 14756 introduced a rating process which compares P with those
performance values which are actually required by the user entity (reference values). These
values are

 1. the total throughput reference vector BRef
 2. the mean execution time reference vector TRef
 and
 3. the requirement "all tasks are completed timely" .

The result of the rating is the final decision on the SUT: "satisfactory" or "unsatisfactory".

7.2 The ISO theoretical reference machine

The ISO theoretical reference machine does not really exist. It is defined as a fictive SUT
that just fulfils the timeliness functions stated in the workload (when the SUT is driven by
this workload). No task will be executed faster than necessary but all tasks are executed in
time. The performance of this fictive SUT represents the requirements of the user entirety
and is named PRef .

 PRef = (BRef, TRef, ERef) (7.1)

 BRef = (BRef(1), BRef(2), ...,BRef(m)) (7.2)
 TRef = (TRef(1), TRef(2), ...,TRef(m)) (7.3)
 ERef = (ERef(1), ERef(2), ...,ERef(m)) (7.4)

PRef can be determined as follows.

Determination of TRef :
TRef is the set of required execution time mean values of m task types. These required
mean execution times can be computed directly from the timeliness functions of the WPS
as shown in Section 7.3.1 ; no additional data are required. This yields the values of the m
components of TRef .

Determination of BRef :
Looking at the principles of user emulation by the RTE we can see that the throughput
value of every task type can be computed only from the values defined in the WPS (as
shown in Section 7.3.2). No additional data are required except the execution time mean

 80

values. But these values, the m components of TRef , are already known; they also come
from the WPS. This yields the values of the m components of BRef.

Determination of ERef :
It is not necessary to perform a separate computation for determing the timely throughput
ERef of the theoretical reference machine. According to the third property cited in Section
7.1, the timely throughput is already known. It is identical to the reference throughput
because, as stated in the definition of the theoretical reference machine, all tasks are
completed timely. Therefore it is true:

 ERef = BRef (7.5a)

 i.e. ERef(j) = BRef(j), j = 1, 2, ..., m (7.5b)

7.3 Computation of the reference performance values

7.3.1 Computation of TRef

In equation (7.3), TRef is the set of the terms TRef(1), TRef(2),..., TRef(m), where
m is the number of task types. TRef(j) can be computed from the timeliness function of
the type j tasks. This because the theoretical reference machine executes the tasks as fast
as is needed. This implies that it responds only with execution times which equal the upper
time class boundaries of the timeliness functions. The computation of TRef(j) will be
explained using the examples of Section 2.5 .

Example 1:
We use the timeliness function TF1 (according to Fig. 2-4 in Section 2.5). 90% of the tasks
may have an execution time of 2.00 seconds. The remaining 10% of the tasks may have an
execution time of 10.00 seconds. The mean value is
 0.90*2.00sec + 0.10*10.00sec = 2.80 seconds .
Assuming that task type 1 uses this timeliness function we have
 TRef(1) = 2.80 seconds .

Example 2:
We use the timeliness function TF2 (according to Fig. 2-5 in Section 2.5). All of the tasks
may have an execution time of 3.00 seconds. This is also the mean value. Assuming that
task type 2 uses this timeliness function we have
 TRef(2) = 3.00 seconds .

Example 3:
We use the timeliness function TF3 (according to Fig. 2-6 in Section 2.5,). 90% of the tasks
may have an execution time of 2.00 seconds. 8% of the remaining tasks may have an
execution time of 10.00 seconds. The remaining 2% may have an execution time of 20.00
seconds. The mean value is
 0.90*2.00sec + 0.08*10.00sec + 0.02*20.00sec = 3.00sec
Assuming that task type 3 uses this timeliness function we have
 TRef(3) = 3.00 seconds .

 81

Let z be the number of time classes of the timeliness function of type j tasks. TRef(j) is
to be computed as follows.

 TRef(j)= gT(1)* rT(1)
 + gT(2)*(rT(2) - rT(1))
 + gT(3)*(rT(3) - rT(2))
 + ...
 . (7.6)
 .
 + ...
 + gT(z)*(rT(z) - rT(z-1))

gT(k) is the boundary of time class k of the timeliness function. rT(k) is the relative
time class frequency of time class k of the timeliness function.

Which timeliness function is assigned to a task type can be seen from the task type
definition of the WPS (for an example see Fig. 2-10 in Section 2.7.2). In general there are
m task types in the WPS and p timeliness functions. Also p < m because sometimes two
or more task types use the same timeliness function. Performing the computation for all p
timeliness functions defined in the WPS delivers all m values TRef(j). This is the
execution time mean value reference vector TRef (see equation (7.3)).

7.3.2 Computation of BRef

BRef is the set of the values BRef(1), BRef(2),...,BRef(m) where m is the number of
the task types. These reference values result from the hypothetical situation that, according
to Section 7.2, the SUT responds only with execution times which just satisfy the
timeliness functions. No task will be executed faster than necessary, but all tasks are
executed in time. Therefore the execution time mean value TME(j) of the theoretical
reference machine equals the corresponding mean execution time reference value
TRef(j). This is true for all task types.

Using this fact, it is possible to compute BRef(j) using the definition of throughput as
follows. Throughput is the number of tasks divided by the time in which the tasks are
submitted. For this time it is a good idea to take the mean duration of a chain. Annex B.2
of the standard illustrates clearly how to derive the formula using this idea. This is no proof
in a strict mathematical sense. But, because it yields the correct result, it is a good guide for
programming a subroutine for computing the formula. We can then obtain, after much
mathematical work, the so-called beta formula. It computes BRef(j).

Note: The name of this formula is historical. It originated in the early drafts of the German
Standard DIN 66273 [DIN01] (see also [DIRLE02] and [DIRLE03]), parts of which were
used when writing the ISO/IEC 14756. In those German papers the Greek letter beta was
used instead of BRef . ■

 82

(

)

 83

The computation is not explained in full here. The important fact seen from the formula is
that it uses only arguments which are found in the WPS. I.e. BRef(j) (and the vector
BRef , see equation (7.2)) can be computed from the values found there. BRef is uniquely
defined by the WPS. No additional data and no measurement are required.

Despite the formula being complex (see equations (7.7a), (7.7b)) it can easily be used for
the calculation of BRef . Even for a large WPS a present day computer can execute it
quickly.

Note: The author developed the beta-formula using a stochastic mathematical model and
solving its so-called Chapman-Kolmogorov equations. He carried out this work for DIN in
the 1980s. The formula was published in [DIN01] and appeared again in [DIRLE02], and
is now incorporated on ISO/IEC 14756. A source program for computing the formula was
published in [DIN01] and appeared again in [DIRLE02], is also found in Annex E of
ISO/IEC 14756, and additionally a subroutine is contained in the DEMO system, found on
the CD as part of this book. ■

Performing the computation of equations (7.7a,b) for all task types delivers the m values
BRef(j). They represent the timely throughput reference vector BRef (see equation (7.2)).
ERef is then (see equation (7.5a)) computed.

7.4 Throughput rating

For the throughput rating the SUT throughput B is compared with the throughput BRef of
the theoretical reference machine. The throughput rating value of type j tasks is RTH(j).

 RTH(j) = B(j) / BRef(j) (7.8)

For each of the m task types the throughput rating value has to be computed. This is the
throughput rating vector RTH.

 RTH = (RTH(1), RTH(2),....,RTH(m)) (7.9)

The throughput rating is simple. For each task type only two results are possible:

 RTH(j) < 1 : "Less than reference" i.e. unsatisfactory or
 RTH(j) > 1 : "Not less than reference" i.e. satisfactory .

Only if all m values RTH(j) are not less than 1 does the SUT satisfy the user entirety
throughput requirements.

7.5 Rating the mean execution times

For the mean execution time rating the SUT mean response time vector TME is compared
with the mean execution time vector TRef of the theoretical reference machine. The
execution time rating value of the type j tasks is RME(j).

 84

 RME(j) = TRef(j) / TME(j) (7.10)

For each of the m task types the mean execution time rating value has to be computed. This
is the mean execution time rating vector RME .

 RME = (RME(1), RME(2),....,RME(m)) (7.11)

The mean execution time rating is simple. For each task type only two results are possible:
 RME(j)< 1 : "Less than reference" i.e. unsatisfactory or
 RME(j)> 1 : "Not less than reference" i.e. satifactory .

Only if all m values RME(j) are not less than 1 does the SUT satisfy the user entirety mean
execution time requirements.

Attention is drawn to the fact that in equation (7.10) above, contrary to equation (7.8) the
reference value is the numerator. This was intentionally so defined to achieve the same
rating principle as for the throughput: the quotient is less than 1 for "unsatisfactory" and
not less 1 for "satisfactory".

7.6 Timeliness rating

Why is timeliness rating needed ? The mere rating of the mean execution times is
inadequate. There could be some very long execution times that would be balanced
statistically by some very short execution times. The long execution times would be
unacceptable and the too short execution times of little benefit.

This was the background for the introduction into the ISO method of the timeliness
functions (see Section 2.5) and the performance term "timely throughput" E (see
Section 5.4).

The obvious way for a timeliness rating could be to use, analogous to the throughput
rating, the quotient E(j)/ERef(j) as a criterion. Or we could use the quotient
E(j)/BRef(j) (which means the same because of equation (7.5a)). But this criterion
does not check the third requirement of Section 7.1 satisfactory.

For an explanation we consider task type 3. If the actual throughput B(3) is greater than
BRef(3), then a curious situation could arise. There are enough short execution times for
achieving E(3) > ERef(3). I.e. our criterion quotient E(3)/ERef(3) is not less 1,
producing the decision "satisfactory". However it could happen that not all type 3 tasks
fulfil the according timeliness function. This would violate the general rule that a criterion
quotient of 1 means "satisfactory" (here "all tasks completed timely").

The problem is solved by taking the quotient ERef(j)/B(j) as a criterion. I.e. we define
the following timeliness rating term:

 85

 RTI(j) = E(j) / B(j) (7.12)

Because not more than all tasks can be timely executed the term RTI(j) cannot be greater
than 1. Therefore

 RTI(j) < 1 means "unsatisfactory timeliness"
 RTI(j) = 1 means "satisfactory timeliness"

For each of the m task types the timelines rating value RTI(j) has to be computed. This is
the timeliness rating vector RTI:

 RTI = (RTI(1), RTI(2),....,RTI(m)) (7.13)

Only if all m RTI(j) values equal 1 does the SUT satisfy the timeliness requirements of the
user entity.

7.7 Overall rating

7.7.1 General ISO rule of rating

There are m rating values RTH(j) and m rating values RME(j) and m rating values RTI(j).
I.e. there are 3*m rating values. If at least one value is less 1 then the SUT fails to fulfil at
least one of the user requirements specified in the WPS and must be rated "unsatisfactory".
Otherwise the SUT is "satisfactory" and could even perform better than the requirements.

For acceptable tolerances of the rating values see Section 8.4 .

7.7.2 Extended ISO rating rule

ISO/IEC 14756 allows an extension of this simple rating. The user of the standard is free to
define personal bandwidths for the R-values (by setting X-values as follows) and to accept
only SUTs within such ranges.

 XTH-lower < RTH(j) < XTH-upper (7.14a)

 XME-lower < RME(j) < XME-upper (7.14b)

 XTI-lower < RTI(j) < 1 (7.14c)

One purpose of the standard in allowing such bandwidths is to make it possible to rate how
much a SUT is better than required by the WPS. This, for instance, might be of interest if a
too good SUT (i.e. exceeding the requirements) could justify a premium price.

 86

Concerning the equation (7.14c) it would make no sense to have an upper limit such as
"XTI-upper"; the reason being that RTI(j) cannot exceed 1.

The user of the standard should be aware of the following consequence. If at least one of
the values XTH-lower , XME-lower , XTI-lower is defined as less than 1, then a SUT will
be rated as "satisfactory", while the user entity will regard it as "unsatisfactory".

It is strongly recommended not to define any of the three "lower-values" as less than 1. But
it could make sense, in special situations, to define XTH-upper and/or XME-upper as greater
than 1.

7.8 Exercises

Exercise 1: Determining the rating values

Consider the workload and the measured performance of solutions of Exercise 1, Section
6.6. The measurement archive is in directory
 CD/Sol-files/Mment-ch6/ARCHIVE-TTxcMm6-E1/ .
Compute the rating values.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section7-8.pdf .

 87

8 The performance measure Nmax

8.1 Maximum number of timely served users (Nmax)

People like to describe the performance of IP systems by a scalar value such as the old-
fashioned "million instructions per second" (MIPS) of mainframe machines or "giga
floating point operations per second" (GFLOPS) of super computers. Contrary to this the
ISO method makes it clear that system performance measure is not a scalar but a vector (or
even a set of three vectors).

To approximate the theoretical unreachable goal of a scalar performance measure we can
take an ISO workload and modify it stepwise. There are many ideas of doing so.

For instance we can modify the activity types by using a replication factor (for examples
see Section 11.3.1). We can perform several measurements increasing the replication factor
and determine the rating values. We can use the replication factor as a performance term.
Performance is the limiting value of the replication factor when the ISO rating changes
from "satisfactory" to "unsatisfactory" (see Section 14.3).

One idea of modifying a workload stepwise seems to be both attractive and very practical.
It is to increase the number of users of a defined workload while keeping constant all other
parameters of the WPS. When the rating changes from "satisfactory" to "unsatisfactory",
Nmax is the number of users. But it is important not to change the basic characteristics of
the workload when increasing the number of users. This implies that we eventually cannot
increase the number of emulated users by an arbitrary increment. This aspect is detailed
pointed out in Section 8.2 .

Nmax is a powerful performance measure, but it is not an absolute measure. It always refers
to a defined workload. Nmax is a not normative performance measure of ISO/IEC 14756 but
it is tolerated by the standard. It is derived from the ISO terms. It is only applicable to
multi-user SUTs.

8.2 Incrementing the number of users

If the workload has only one user type (i.e. n = 1) the lowest possible number of users is 1.
We can set Nuser(1) = 1 . Then Ntot = 1 and the workload is a basic workload. The
smallest step for increasing Ntot is 1. We are free to increase Ntot in steps of 1 or more.

If the workload has more than one user type (i.e. n > 1) the situation is more complicated.
As an example we take a workload with two user types, i.e. n = 2, each having one user.
Obviously Ntot = 1 is impossible. The minimum value of Ntot is 2. Increasing Ntot from 2
to 3 users would violate the principle of keeping the basic characteristics of the workload.
The relative percentages of the chain types would be changed. But increasing Ntot from 2
to 4 would keep the percentages the same. The minimum increment for changing Ntot is
therefore a multiple of 2. Consequently Nmax would be an even number.

Generally the basic workload of a given workload is found by determining the greatest
common divisor NGCD and then dividing all n(i) by NGCD .

 88

Example: The values of the WPS are

 Nuser(1) = 180
 Nuser(2) = 60
 Nuser(3) = 90

 Ntot = 330

We find NGCD = 30. All user numbers divided by NGCD yields

 Nuser(1) = 6
 Nuser(2) = 2
 Nuser(3) = 3

These are the user numbers of the basic workload. Its Ntot value equals 6 + 2 + 3 = 11 .
Multiplying all user numbers Nuser(i) by 1, 2, 3, etc. yields Ntot = 11, 22, 33, etc. The
smallest possible increment (called minimum increment) of Ntot is 11 .

This example shows how to obtain the minimum increment and user numbers of each user
type.

8.3 Measurement series

A measurement series results from using a basic workload and incrementing the user
numbers stepwise by multiplying with 1, 2, 3, etc. This is a series with the minimum
increment. For each step a measurement has to be performed and the rating values have to
be determined. Nmax is the greatest number of Ntot still having the rating result
"satisfactory".

It is recommended to start a measurement series always with the lowest possible Ntot
value, i.e. use the total user number of the basic workload for checking whether the RTE
and the SUT are running well. If the measurement works correctly proceed by increasing
the user number. But it is not necessary to proceed always with the minimum increment. If
the rating shows excellent values some steps can be skipped. Ntot can be increased by a
multiple of the minimum increment. When coming close to the situation in which the
rating changes from "satisfactory" to "unsatisfactory" use only single steps, i.e. the
minimum increment of Ntot. This is to determine as precisely as possible the value Nmax .

Typically Nmax is not exactly just a multiple of the minimum increment. For instance in the
example above (in which the minimum increment is 11) it might happen that Ntot = 88 has
a rating with all RTH and RME values clearly above the limit of 1 and no RTI value less
than 1. And the next value (Ntot = 99) delivers a rating with some (or all) R values being
clearly below 1 (showing "unsatisfying"). Then Ntot = 88 is the Nmax value.

But in this example it is up to the person responsible to consider interpolation between 88
and 99.

 89

Figures 8-1 and 8-2 show an example of the result of a measurement series. The workload
used was similar ISO type CC2 (version "M" and REP about 20). The SUT was an Intel
CPU based machine; the CPU rate was about 1.5 Mhz. The operating system was LINUX.
There were m = 6 task types. Consequently each of the performance terms B, TME and E has
6 components (yielding 6 curves) as shown in Fig. 8-1.

The rating values are shown in Fig. 8-2 . For m = 6 task types each of the rating terms RTH ,
RME and RTI has 6 components (yielding 6 curves) as shown in Fig. 8-2 . The values of RTH
and RME can clearly be greater than 1. But those of RTI cannot be greater than 1 (see
explanations in Section 7.6).

Nmax is defined when at least one of 3*6 =18 R-curves falls below 1 . This happens, in the
example, with RTI(j) at about Ntot = 15. As explained above one could decide on
Ntot = 16. This small bonus is due to d and ALPHA as be explained in the following
Section 8.4.

8.4 Acceptable tolerances of Nmax

The confidence intervals d(j) for checking the statistical significance of the measurement
result can be interpreted as the maximum possible measurement error (see Section 4.3.2).
This result has a probability of 1 - ALPHA of being correct. This implies that the
assessment would be too strictly to take 1 as the limit of the rating values R. For instance if
d were set to 5% of a regarded performance term then 1 - 0.05 = 0.95 can be accepted as
the limit of R values, i.e. the limit for determining Nmax is not 1 but 0.95 (see Section
7.7.1).

It is up to the person responsible for the measurement to use a limit less then 1. This results
in a somewhat better value of Nmax .

8.5 Experiences from various measurement series

With increasing Ntot the B curves typically rise from their initial values (from the basic
workload). But at some point they stabilise and then fall sharply.

With increasing Ntot the TME curves typically rise from their initial values (from the basic
workload). But at some point they escalate sharply.

With increasing Ntot the RTI curves typically remain at first at their initial values (from the
basic workload). These initial RTI values are 1 if the SUT is fast enough compared with
the timeliness requirements in the WPS of the basic workload. Elsewhere one or all initial
values can be less than 1. With increasing Ntot suddenly one curve or some of them fall
sharply.

If the WPS contains no task types having the task mode value 0 (NOWAIT) then mostly
the RTI values are what determine the value of Ntot . I.e. timeliness is the deciding
criterion (and not throughput or mean execution times). Examples of such workloads are
the ISO workload COMPCENTER1, Version "I" and COMPCENTER2, Version "I" (see
Annex F in ISO/IEC 14756 and also Sections 11.3.2, 11.3.3, 11.5.1.1 and 11.5.2.1 of this
book).

 90

8-1a Total throughput

8-1b Mean execution time

8-1c Timely throughput

Fig. 8-1 Measured performance values of a measurement series

0
0

5 10

0,05

0,10

0,15

0,20

0,25

0,30

15 20 25

B(j) [tasks/sec]

Ntot

j = 2,3

j = 1,4,5

j = 6

0
0 5 10

20

40

80

100

140

15 20 25

T (j) [sec]

Ntot

j = 2

j = 6

j = 1

60

120

ME

j = 3

j = 4

j = 5

0
0

5 10

0,05

0,10

0,15

0,20

0,25

0,30

15 20 25

E(j) [tasks/sec]

Ntot
j = 2

j = 1

j = 6

j = 3

j = 4

j = 5

 91

8-2a Throughput rating

8-2b Mean execution time rating

8-2c Timeliness rating

Fig. 8-2 Rating values of a measurement series

0
0 5 10

1

2

4

5

7

15 20 25

R (j)

Ntot

j = 1,2,3,4,5,6
3

6

TH

8

9

0
0 5 10

2

4

6

8

15 20 25

R (j)

Ntot

j = 6

1

ME

50

~~

j = 4

j = 5
j = 1

j = 3

j = 2

~~

0
0,1 5 10

0,2

0,3

0,5

0,6

0,8

0,9

15 20 25

R (j)

Ntot

j = 2

j = 4,5,6

j = 1

0,4

0,7

1,0
TI

j = 3

 92

But if most task types defined in the WPS have the task mode value of 0 then typically the
RTH values are the criteria that determine the value of Ntot . I.e. the throughput is the
deciding criterion (and not mean execution times or timeliness). Examples of such
workloads are the ISO workloads COMPCENTER1, Version "B" and COMPCENTER2,
Version "B" (see Annex F in ISO/IEC 14756 and also Sections 11.3.2, 11.3.3, 11.5.1.1 and
11.5.2.1 of this book).

Although in principle the duration of the rating interval TR increases with increasing Ntot
this effect is not very strong marked. Usually TR is not much longer for Ntot = Nmax than
for Ntot = value of the basic workload. TR only increases sharply when Ntot is clearly
greater than Nmax .

8.6 Exercises

Exercise 1: Measurement using a basic workload

Preparation

Use the WPS of Exercise 1 of Section 6.6 but change the activity types to TT1a, TT2a
and TT3a as shown below.

 93

File TT1a :

#!/bin/sh

Shell procedure TT1a

echo Procedure TT1a started

mkdir $$
cd $$
Creating a directory having a unique name,
which is the actual UNIX process number.
echo TT1.$$ > TT1-Res
Bringing the name of the called shell
and the actual UNIX process number - as
an identifier of the run - to the output file.

cat TT1-Res ../science.c >> ../TT1.out

A line for marking the begin of the grep result

echo XXXXXXXXXXXXXXXXX > xfile
cat xfile >> ../TT1.out
grep a ../science.c >> ../TT1.out
copy the input file and the grep result
to the output file

Loop for additional CPU and I/O loading

anzahl=1
while [$anzahl -le $REP]
do
#echo $anzahl -th run through the loop
cat ../science.c >> ./TT1.intern
cp ../science.c scie-local
grep a scie-local > grep-result
cat grep-result >> ./TT1.intern
echo $anzahl > number
cat number >> ../TT1.out

anzahl=`expr "$anzahl" + 1`

#echo $anzahl in creased

done

rm -f *
cd ..
rmdir $$
Cleaning temporary files and the directory.

echo End of procedure TT1a
== End of procedure ==

Files TT2a and TT3a are analogous. All three files are found in directory
 CD/Sol-files/Mment-ch8/OSCPs-TTxa-shells/ .

 94

Part 1
Write down WPS and SAG.DAT .

Part 2
Check whether this workload is a basic workload.

Part 3
Determine the increment of Ntot for performing a measurement series.

Part 4
Set Ntot = 2 and perform a measurement using REP = 1.
Report the measured performance and rating values.

Exercise 2: Performing a measurement series

Become familiar with the operator utility "./runMeasurement x" of DEMO.
Perform a measurement series and determine Nmax . Use a REP value suitable for your
SUT. Store the measurement result files using the operator utility
 "./saveMment ddd" or "./saveMment2 ddd".
All files are stored in the directory "ddd" .

Note: For instance if your SUT has a 1.2 Mhz Intel CPU, a value of REP=30 can be
suitable. If your SUT uses a faster CPU the following problem can arise. The maximum
number of users to be emulated by DEMO 2.0 is 99. But Nmax can be greater than 99. Then
use a value greater than 30 for REP. There is another problem that can limit the maximum
number of users emulated by DEMO. Most of the LINUX operating systems support less
than 99 active Xterminals or remote shells when using the default values of the operating
system parameters. When using DEMO in this exercise, the easiest way is to set REP to a
value that does not cause Nmax to exceed 25 or 30.

Exercise 3: Repeat the measurement series with a modified WPS

Use the same workload as in Exercise 2. But modify its WPS by setting the task modes of
all task types to 0 (NO WAIT). Use the same REP value as in Exercise 2. Observe the
effect of increasing Ntot on B and the rating values.

Exercise 4: Greater REP value

Repeat the measurement series of Exercise 2 with a significantly greater REP value.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section8-6.pdf .

 95

9 Summary of the ISO system performance
 measurement method

The fundamentals of the ISO method have certainly been understood by reading the first
eight chapters. Chapter 9 is an intermediate chapter. It is intended to help the reader by
summarising the essentials. It should also give a better understanding of the basic
principles explained in the previous chapters.

9.1 The steps of an ISO-type measurement run

The goal of an ISO-type measurement run is to determine the performance of an IP system,
the SUT, in a well defined environment and in a reproducible way. This implies that the
measurement cannot be performed with real users. It has to be performed in a test-bed that
simulates the entirety of users in a realistic way (see Fig. 9-1).

Fig 9-1 Test bed for the measurement

The steps of the measurement procedure (see Fig. 9-2) are as follows. Please notice that,
for easier understanding, the sequence of steps is chosen slightly different from that in
ISO/IEC 14756. But the ISO procedure remains unchanged.

General
IP System

Terminal lines,
or LAN/WAN,
or other
network

ISO-type
Emulator
System

Workload
Parameter

Set

Computational
results

Tasks

Logfile

SUT RTE

RTE: Compact system or distributed

 96

9.1.1 Step 1: Specification of the workload

The workload has to be specified in accordance with the ISO workload model (see
Chapter 2). For a summary of its components see Section 2.10 in Chapter 2 and Annex C
in ISO/IEC 14756. Short overview of the included data and information:

 ● the WPS, i.e. the basic parameters of a defined user entirety and the values of all user
 behaviour parameters, including the user requirements for execution times of all task
 types
 ● the complete application software to be used by the user entirety together with any
 special system software
 ● the complete stored data of the applications
 ● For checking the correctness and the quality of the measurement have to be provided
 the so-called correct computation results, the so-called DELTA criterion and the
 requirements concerning the statistical significance.

9.1.2 Step 2: Installation of the applications on the SUT

The complete application SW has to be installed on the SUT, including the according
stored data, and made ready for running in real user operation. The applications must be
tested comprehensively for correct operation and computational results. Only proceed to
Step 3 when Step 2 has been completed successfully.

9.1.3 Step 3: Connecting the SUT to the RTE

The SUT can now be connected to the RTE. The connection has to be implemented by real
data communication lines. As above, proceed to the next step only when comprehensive
check for correct function of all applications of all emulated users has been performed.

9.1.4 Step 4: Loading the RTE with the WPS

The WPS has to be loaded onto the RTE. The loading includes the set of all input strings
and the input variation rules.

9.1.5 Step 5: The measurement run

Two forms of the measurement run are possible depending on the rating intervals. The
basic form has common RIs while the other has individual RIs (see Section 6.2).

9.1.5.1 Basic form of measurement with common rating intervals

Define the duration of the StP and the TR of the RI. These two values have to be set
according to the experience of the person responsible for the measurement. They define the
times t1 and t2 .

 97

a) Stabilisation phase (StP)
Start the RTE (time t0). At this the StP begins. Wait for the end of the StP (time t1).

b) Rating interval (RI)
The RI begins at t1 . At this time the recording of the logfile has to be started. If you have
split the logfile into an RI and an SR part (see Sections 3.4 and 3.5) recording is on the RI
part. The RI ends at t2 .

c) Supplementary run (SR)
The SR begins at t2, which has to be marked in the logfile. With a split of logfile, recording
the RI part is now complete and recording of SR part starts. When the computational
results of all tasks submitted before t2 have been received, time t3 is reached, the SR ends
and the recording of the logfile stops. At this time the RTE can also be stopped.

d) Saving the computational results
All computational results of the SUT have to be saved unless they are being checked
dynamically for computational correctness (see Sections 4.1. and 4.4).

9.1.5.2 Measurement with individual rating intervals

Define the planned durations of the StP and TR of the RI. These two values have to be set
according to the experience of the person responsible for the measurement. They define the
times t1 and t2 .

a) Stabilisation phase (StP)
Start the RTE (time t0). At this time the StP begins. Wait for the planned end of the StP
(time t1). Check the task chain of each user and wait for its completion. This moment is
t1ind and the start of the individual RI of the user. Do not forget to repeat for each user. For
details see Section 6.2.1 .

b) Rating interval (RI)
The individual RI of each user starts at his t1ind . At this time the recording of each
individual logfile has to be started. With a split logfile the recording is on the RI part (see
Sections 3.4 and 3.5). If you are using the Urn Method do not choose any chain start for
t1ind, but wait for the start of a new cycle. For "cycle" see Section 6.3.2.1 . The planned end
of the RI is t2 . Check the task chain of each user and wait for its completion. This time is
t2ind and the end of the individual RI of the user (see Section 6.2.1) If you are using the Urn
Method, check the chain cycle and wait for its completion. This time is t2ind and the end
of the individual RI. Do not forget to repeat for each user.

c) Supplementary run (SR)
The individual SR of each user begins at his t2ind which has to be marked in the
individual logfile of each user. With a split logfile (see Sections 3.4 and 3.5) the individual
RI part is now complete and recording the individual SR part starts. When the
computational results of all tasks submitted before t2ind have been received, time t3ind is
reached and the individual SR ends. When all users have reached their t3ind , this common
time is t4 and the recording of the individual logfiles stops. At this time (or later) the RTE
can also be stopped.

 98

d) Saving the computational results
All computational results of the SUT have to be saved unless they are being checked
dynamically for computational correctness (see Sections 4.1 and 4.4).

9.1.6 Step 6: Checking the correct working of the SUT

All computational results of each user have to be checked against the correct results stored
in the workload (see Section 4.1). Clearly, this checking is laborious and needs suitable
computing capacity. With input variation it is even more laborious (see Section 4.4). If the
checking fails the measurement is not valid. The SUT has to be debugged and a new
measurement has to be planned for the improved SUT.

9.1.7 Step 7: Checking the correct working of the RTE

This step checks the RTE against the DELTA values specified in the workload (see Section
4.2). Such criteria are for the relative chain frequencies, the means and the standard
deviations of the preparation times. The corresponding measured values have to be
computed from the logfiles. None of them may differ more than allowed by the DELTA
value. They have to be checked for both the RI and the SR parts of the logfiles. If there are
differences greater than allowed in the workload, the RTE has functioned inadequately and
the measurement is not valid. The RTE has to be corrected and new measurement has to be
planned with the improved RTE.

9.1.8 Step 8: Checking the statistical significance and the RI overlap

As explained in Section 4.3 the significance of the measured results must be checked. This
check is using the RI part of the logfile. The sequential test of the execution time mean
values has to be done separately for all m task types. The test criteria are the confidence
coefficient ALPHA and the confidence intervals d as specified in the workload. If any
result was "NOT OK", the measurement was unsuccessful. The statistic uncertainty of the
measured preparation time mean value of at least one task type was less the requirement in
the workload and the reason must be investigated. A new measurement with improved test
conditions (for instance a longer StP and/or longer RI) has to be planned.

With using individual RIs (see Section 6.2.1) an additional check is necessary. As
explained in Section 6.2.4 the individual RIs must have sufficient overlap. The ISO
criteria are listed in Section 6.2.4. If any of these three criteria are not fulfilled the
measurement is invalid. The reasons have to be investigated and a new measurement with
improved test conditions has to be planned.

9.1.9 Step 9: Calculating the performance values

Calculate the performance values,
 i.e. P = (B, TME, E)
from the RI part of the logfile (see Section 9.2.1).

 99

Fig. 9-2 The steps of the ISO measurement procedure

Start

Defintion of the workload

Installation of all applications on the SUT
and making ready for operation

Successful end
Solve problems and plan

a new measurement

(successful)

Connect SUT to the ISO user emulator
and check for full operation

Load the WPS and all according data
into the RTE

Step 1

Step 2

Step 3

Step 4

Mesurement run
a) Stabilisation phase
b) Rating interval
c) Supplementary run
d) Data saving

Step 5

Proof of correct working of SUTStep 6

(successful)

Validation of accuracy of RTE Step 7

(successful)

Check of statistical significance of the
measurement results
In case of using individual rating
intervals check for sufficient overlap

Step 8

Calculation of the performance values
 P= (B, T , E) from the logfile

Step 9

Calculation of the rating values
R= (R , T , R) from P and WPS values

Step 10

ME

METH TI

Debug SUT
(unsuccessful)

Improve RTE
(unsuccessful)

Investigate
reasons(unsuccessful)

(unsuccessful)

 100

9.1.10 Step 10: Calculating the rating values

Calculate the rating values,
 i. e. R = (RTH, RME, RTI)
by comparing the performance values (i.e. P) to the reference performance values (i.e.
PRef) which are derived from the users requirements defined in the WPS (see Section
9.2.2).

Both Steps 9 and 10 are explained further in Section 9.2 .

9.2 Computing the measurement results

9.2.1 Calculation of the performance values

This calculation (Step 9, see Section 9.1.9) is only meaningful if each of the preceding
Steps 6, 7, 8 had delivered the result "satisfactory". Otherwise the calculation can be
omitted because the computed performance values have no relevance.

The calculation needs the following data (see Chapter 5):

 a) Data from the measurement run
 ● the values of t1 and t2 (start and end of the RI)
 or, if individual RIs were used, the values
 of t1ind and t2ind of all users
 ● the logfile (containing the recorded data sets of all tasks
 submitted to the SUT within the RIs)

 b) Data from the workload
 ● the WPS of the workload (which contains the
 important timeliness functions)

The numbers b(j) of executed tasks submitted within the RI can be computed from the
logfile data. Hereby the throughput values B(j) are computed yielding the throughput
vector B (see Section 5.2).

The execution times TME(j) can also be computed from the logfile, yielding mean
execution time vector TME (see Section 5.3).

The numbers e(j) of timely executed tasks can be computed from the logfile data,
together with the values of the timeliness functions. Hereby the timely throughput values
E(j) are computed, yielding the timely throughput vector E (see Section 5.4).

The measured performance P = (B, TME, E) of the SUT, with respect to the used
workload, is determined. This is a set of 3*m values, where m is the total number of task
types which were defined in the workload:

 101

 B(1), B(2),..., B(m)
 P = TME(1), TME(2),..., TME(m) (9.1)
 E(1), E(2),..., E(m)

If individual RIs are used some other data from the measurement are needed (see Section
6.2.1). Instead of one pair of values (t1 and t2), the measurement delivers Ntot pairs of
values (t1ind and t2ind) where Ntot is the total number of users. The computation of P has
not to be performed according to Sections 5.2 to 5.4 but to Sections 6.2.2 and 6.5.1 to
6.5.3. Especially if applying the Urn Method the individual RIs have to be used and the
performance values have to be computed according to this method.

9.2.2 Calculation of the rating values

This calculation (Step 10, see Section 9.1.10) is only meaningful if each of the preceding
Steps 6, 7, 8 had delivered as a result "satisfactory". Otherwise the calculation can be
omitted because the computed rating values have no relevance.

The calculation needs the following data (see Chapter 7):

 a) The performance data from the measurement run
 (i.e. the 3*m performance values of P as computed
 according to Section 9.2.1)

 b) The WPS from the workload

The performance reference values of the ISO theoretical reference machine (see Section
7.2) have to be computed from the WPS as follows.

According to Section 7.3.2 the throughput reference vector

 BRef = (BRef(1), BRef(2), ..., BRef(m))

and according to Section 7.3.1 the mean execution time reference vector

 TRef = (TRef(1), TRef(2), ..., TRef(m))

have to be computed from the WPS values. From the measured performance values and the
reference values, the three rating vectors are now computed:

 ● Throughput rating vector (according to Section 7.4)
 RTH = (RTH(1), RTH(2), ..., RTH(m))

 ● Mean execution time rating vector (according to Section 7.5)
 RME = (RME(1), RME(2), ..., RME(m))

 ● Timeliness rating vector (according to Section 7.6)
 RTH = (RTH(1), RTH(2), ..., RTH(m))

 102

The total rating uses these 3*m rating values as described in Section 7.7.1. Generally, if
none of these 3*m values is less than 1 then the SUT performance is satisfactory. If any R
value is less than 1 then the SUT performance is unsatisfactory with respect to the
requirements of the user entirety defined in the workload.

For special aspects of the total rating see Sections 7.7.2 and 8.4 .

9.3 The measurement report

The following principles are not part of the ISO/IEC 14756, but are recommended for the
measurement report. ISO did not define form and contents of a measurement report.

9.3.1 Principles

9.3.1.1 Completeness

The measurement report should describe all facts, data and steps of a measurement. It has
to be comprehensive; no essentials with respect the ISO method may be omitted.

9.3.1.2 Detailed Report

The measurement report should give a detailed description of all facts, data and steps
performed.

9.1.3.3 Clarity

The representation of the facts should be unambiguous and clear. The use of data
processing jargon should be reduced to the unavoidable minimum. Do not use the jargon of
companies, manufacturers, service groups, etc. Add a complete list of used acronyms and
abbreviations with clear explanations.

9.1.3.4 Data formats

These data formats should be used in the report:

a) Formats readable by humans
There are parts intended to be read by a human reader (text in the widest sense). Text,
including graphics, tables, etc. should be stored in a long-lasting machine independent
format, readable a lot of years later. Do not use the format of a short-lived text processing
system or a local archive. Recommended are formats such as PDF (Adobe), PS (Postscript)
or TEX or LATEX. Additionally produce a hardcopy printout and a COM (computer
output on micro film) of the most important parts.

b) Formats generally machine-readable
There are parts of the report which are primarily intended to be read by machines (as, for
instance, data files, programs) and possibly also by humans. Use for those parts as far as
possible a data format which is independent of operating systems, application systems,
database systems, etc. It is recommended that ASCII text be used wherever possible
especially for programs and related information, such as operating system command
procedures, control data sets etc.

 103

c) Formats specifically machine-readable
These are special data which are oriented to a SUT machine type and/or its system
software, which are not intended to be read by a human. They can only be stored in an
machine-specific format. To provide for future usage, it is recommended that these data be
converted to a less machine-dependent format and additionally stored.

9.3.1.5 The storage medium

The storage medium should be such that the report is completely readable long after its
creation. Therefore do not use magnetic tapes or discs. The readers can change quickly.
Operating systems supporting them change even quicker. Practical experience is that such
media become unreadable after a few years. It is recommended that 4.8 inch CD-ROMs be
used, written in ISO9660 format.

9.3.1.6 Reproducibility

The report should be written in such a manner that the measurement can be repeated using
any suitable ISO-type RTE by any personnel having sufficient specialised knowledge of
performance measurement and of the ISO method even if they were not involved in the
original measurement itself.

The purpose of the above recommendations (Sections 9.3.1.1 to 9.3.1.6) is to create a
report which allows everyone, now and in the future to have full information on the
measurements performed and to be able to repeat the measurements with new personnel.
This should be possible independent of the availability of the persons who carried out the
measurements and independent of the measurement system, provided it fulfils the
ISO/IEC 14756.

9.3.2 Suggested contents of the measurement report

Although ISO/IEC 14756 does not specify a list of contents for a measurement report, this
can be derived to some extent from the standard. However this content list is not obvious
to those unfamiliar with the standard. The following incomplete list of important parts is
therefore presented as a guide. It should be supplemented as required for an actual
measurement report.

Contents of the measurement report:

Part 1: Purpose of the measurement
This part is a short summary of what the purpose of the measurement, when, where and by
whom it was carried it out, the names of the main responsible persons, and any other
observations.

Part 2: Description of the SUT
This part includes
 ● detailed and complete specification of the hardware configuration
 and architecture of all components
 ● detailed and complete specification of the software configuration,
 including the operating system, application software and special
 components that are not part of the workload

 104

 ● detailed and complete specification of the communication network and
 its configuration
 ● listing of all settings of system parameters of the operating
 system, of system SW components and of parameters of application
 software components

Part 3: The workload
This part contains the complete workload definition, as explained in Chapter 2. For a
summary see Section 2.10. The workload should be presented in machine-readable form.
The use of a CD-ROM is strongly recommended (see Section 9.3.1.5). A special storage
medium may be necessary, for instance with large data file systems, complete databases or
unusually large software packages.
 The file structure of the workload should be compatible to the ISO workload examples
of Annex F of the ISO/IEC 14756. Copies of the ISO examples are (with permission of
ISO) found in Annex A of this book, see the CD which is part of this book. The ISO
directory structure of the workloads is explained in Section 11.1 .

Part 4: The RTE description
For clarity, the RTE should be described completely. Data to be noted include:
 ● identification of the RTE software system (manufacturer, type,
 release, version,...)
 ● Information about any previous certification of the RTE, or assurance
 that it fulfils the specification of ISO/IEC 14756
 ● description of the RTE hardware configuration (description of all
 computers, their manufacturers, type, configuration,
 communication network and connections, the settings of the main
 system parameters, etc.).

Part 5: Measurements performed
This part lists all measurement runs which were performed. The list has an entry for each
measurement run. Each entry contains at least the following information:
 ● Sequence number of the run
 ● Name of workload used
 ● In case of measurement series the values of the variable parameter
 ● Reference to the storage place, on the storage medium, of the
 measurement operator's protocol (see Section 9.4.1)
 ● reference to the storage place, on the storage medium, of the
 measurement results
 ● short report of general aspects of the measurement, e.g.
 x) "normal course" or irregularities (descriptions)
 x) problems and difficulties
 x) summary of results and comments (for instance "received
 expected performance values", "surprising results")
 ● adjustments of the main operating system parameters (for instance
 maximum possible number of parallel processes, maximum number of
 active files, partitioning, maximum number of served users,...
 ● system and application software settings if these are not
 already noted in the measurement operator's protocol.

 105

Part 6: Measurement results
This part contains one directory for each measurement. The directories include, at least, the
following information:
 ● sequence number of the measurement (as defined in part 5)
 ● reference to the storage place (on the storage medium) of the logfiles
 ● the measured values for and the results of the validations of:
 x) correctness of the computational results of the SUT (see Section 9.1.6, Step 6)
 x) correctness of the work of the RTE (see Section 9.1.7, Step 7)
 x) statistical significance of the measured results (see Section 9.1.8, Step 8)
 x) fulfillment of the criteria of "sufficient overlap" when using individual RIs
 (see Sections 6.2.4 and 9.1.8, Step 8)
 ● measured performance values (i.e. the three m-tupels B, TME, E)
 ● rating values (i. e. the three m-tupels RTH, RME, RTI)

For a measurement series an additional directory should show
 ● P-curves (i. e. the set of 3*m curves of B, TME and E)
 and
 ● R-curves (i. e. the set of 3*m curves of RTH, RME and RTI)
 and
 ● final results (for instance the value of Nmax).

Part 7: Optional information
Here could be an auditing report, if there was any auditing voluntarily performed. Please
note that the ISO/IEC 14756 does not require any auditing because it is a purely technical
standard.

Part 8: Summary of the measurement project
This part is a summary of the work performed and of the main results.

Appendices (Documentation, history, comprehensive data,....)
 ● Annex A
 x) Measurement operator protocols
 x) Collection of measured data
 ● Annex B (archive)
 This Annex is the storage media itself (for instance CD-ROM). Alternatively it could
 be a detailed specification of the storage of all data cited in the report (for instance
 data archive of the measurement laboratory).

9.4 Recommendation for the documentation of a measurement run

9.4.1 Measurement operator's protocol

The 10 steps of a measurement run were explained in the Sections 9.1 and 9.2 . The
measurement procedure cannot be fully automated because many unexpected events can
happen. The sequence of the steps has to be controlled by an operator. These events have
to be documented (on paper or via a computer screen showing a display mask). The
protocol should contain the following parts.

 106

Part 1 Header: "Performance measurement according to ISO/IEC 14756"
 Date, time, operator's name, sequence number of the measurement run
Part 2 RTE: Identification (software system, hardware)
Part 3 SUT: Identification (full details)
Part 4: Chronological list of the operators actions when executing the 10 steps,
 notes of all expected and unexpected events.
Part 5: Detailed information on archiving (all relevant documentation and data,
 see Section 9.4.2)

The form of such a protocol is very dependent on the type of the RTE.

9.4.2 Archiving the measurement files

All data representing an essential part of an ISO-type measurement run should be archived.
This is not a requirement of the ISO standard but it is a natural course of action. Storing the
data can be done by any computer system. It would be possible for the SUT to do it; but
this is not recommended. A better solution is to store the data in a database of the RTE or
of a separate system. For each measurement run the following data should be stored.

 1. The actual WPS used
 2. The set of logfiles of all emulated users; the values t0, t1, t2, t3;
 when using individual RIs the values t1ind, t2ind of all users and the value of t4 .
 3. The complete set of computational results of all tasks of all users of the
 OP (observation period). When the person responsible for planning the
 measurement decided to use dynamic correctness check during the measurement
 run then have the results of this check to be stored.
 4. The data and results of checking the correctness of the RTE's work of the OP.
 5. The data and results of checking the statistical significance
 of the RI or for individual RIs the data
 and results of checking "sufficient overlap".
 6. The measured performance P (3*m values)
 and the rating values (3*m values).

The list of names of files and directories to be archived depends strongly on the SUT and
on the type of the RTE used.

9.4.3 Safekeeping period

Contrary to the measurement report, for which a very long safekeeping period is typical,
the safekeeping period of the archived measurement data (see Section 9.4.2) can be shorter
and is up to the decision of the laboratory. Typically the data are only needed until the
measurement report is written. If an auditing procedure is intended (see Section 9.3.2,
Part 7) then the data should be kept until the auditing report is finished.

 107

9.5 Reproducibility of measurement results

When repeating a measurement the ISO-type RTE intentionally does not reproduce the
user's actions in full detail. Instead it repeats the emulation using new random values. For
instance it varies the preparation times and sequences of task chains. But the RTE performs
the repetition by retaining the defined statistical values. Those are for instance the
preparation time mean values or the relative task chain frequencies. The RTE retains it
within the deviations which are defined in the WPS (DELTA values). This ensures that the
final measurement results (performance values, rating values) differ only slightly when
repeating a measurement.

The differences are random values. They depend on the stated values of the statistical
significance ALPHA and d. The smaller these two values, the smaller are the differences
of measured performance P and of the rating values when repeating a measurement. It is
possible that a repeated measurement can deliver an unexpected difference from the
preceding measurement. This is always possible. But experience is that for "good" ALPHA
and d values the measured performance and rating values very rarely differ more than a
few percent. An example of a "good pair" of values is "ALPHA=0.10" and "d=10% of the
mean values" (see Section 2.9.3). Therefore the reproducibility of ISO-type measurements
will be seen as very stable. If using, for instance not P but the Nmax term as a final
performance measure, then the differences tend to be even smaller.

9.6 Exercises

Exercise 1: Differences in P and rating values when repeating a measurement

Perform twice the following measurement: Use the SUT, workload and replication factor
from Exercise 2 of Section 8.6 . For Ntot use a value that equals about Nmax , estimated in
that exercise. Take the values for ALHPHA and drel from the same exercise (i. e. 0.20 and
0.25). Set the duration TR of the RI to about 200 seconds.

Part 1
Compare the measured performance P and the rating values of the two measurements.

Part 2
Determine for the two measurements those values of ALPHA and drel for which the
statistical significance still holds.

Exercise 2: Co-relation of ALPHA and drel on the reproducibility of measurement results

Repeat the two measurement runs of Exercise 1 above, but set TR to about 500 seconds.

Part 1
Compare the measured performance P and the rating values of the two measurements.

Part 2
Determine for the two measurements those values of ALPHA and drel for which the
statistical significance still holds.

 108

Exercise 3: Difference of Nmax when repeating a measurement series

Perform twice a measurement series using the workload of Exercise 1 and TR
about 200 seconds.

Part 1
Compute the difference of the two measured Nmax values.

Part 2
Determine, for each measurement of the series, those values of ALPHA and drel for which
the statistical significance still holds. Then determine Nmax in consideration of the "possible
measurement error".

Solutions
For solutions see file
 CD/Solutions/Solutions-Section9-6.pdf .

 109

10 Measurement of software (run time) efficiency

Software efficiency is concerned with several qualities such as storage usage,
changeability, maintainability and also with run time. Regarding software efficiency
ISO/IEC 14756 deals only with run time.

10.1 A hierarchical model for information processing systems

Colloquially people used to assign the attribute speed not only to hardware but also to
software. But software does not have an attribute speed. It is a sequence of information
processing steps to be performed. There is no specification of how fast the steps have to be
executed. In reality the execution time of each step depends on the processor (CPU), i.e.
depends on the hardware. In fact we cannot define or measure the speed of software.

To find a suitable measure or term for the aspect under consideration we use a simplified
model of IP systems. This is the hierarchical model presented in Fig. 10-1. In this model
each level receives tasks from the level above. Each level performs received tasks by

Fig. 10-1 Simplified hierarchical model of IP systems

decomposing them into subtasks and delegating these to the level below. The lowest level
is the hardware and is the only one that processes its tasks by itself. It determines the
execution speed of its tasks. No other level can do this.

Users

tasks responses

Application programs

Compiler (or interpreter)

Operating system

Micro-programs

Hardware

 110

Regarding the second level from top there is clearly a functional difference between a
compiler and an interpreter; but this difference is not relevant here.

10.2 The reference environment and the term run time efficiency

Performance (in the sense of speed of execution) can only be defined for a complete
hierarchy, which includes the lowest level, i.e. the hardware. If the hardware is not
included, the speed of execution is undefined and a term performance cannot be defined.

Instead, a term run time efficiency can be defined as follows:

 ● use a hierarchy similar to that presented in Fig. 10-1;
 ● measure the performance P of the IP system;
 ● replace the implementation of the regarded level by another
 implementation which has the same functionality and the same upper
 and lower interfaces;
 ● measure the performance P of the modified IP system;
 ● calculate the difference in P.

The difference in P yields a measure of how more or less efficiently the second
implementation transforms the tasks submitted from the upper level into subtasks
submitted to the lower level compared with the first implementation. The measure is the
software run time efficiency of the second implementation.

A consequence of this idea is that software run time efficiency is a measure which always
refers to a reference environment. This environment consists of a defined implementation
of all other levels. It includes the hardware and the user entirety. And it also includes a
reference software for the level being measured.

This idea is described in Section 8.2 of the ISO/IEC 14756. Although the standard does not
explicitly state that the user entirety is part of the reference environment, this is clearly so.
Without a user entirety which creates and submits tasks, P values cannot be measured at
all. Efficiency values could not be determined.

10.3 The measurement procedure and measures
 of software run time efficiency

10.3.1 The measurement procedure

The determination of the software run time efficiency of a regarded software, for instance
an application program, needs two performance measurements. The procedure consists of
the following steps.

Step 1
List the levels of the reference environment. Define an ISO-type
workload. Define the hardware. Define the implementation of all levels except the level
being measured. This yields the test bed.

Step 2
Define the reference software for the measurement level.

 111

Step 3
Install the reference software on the test bed. This yields the reference system IP0. Perform
an ISO-type measurement. The measured performance is called P0 .

Step 4
Deinstall the reference software and install the actual software on the test bed. This yields
the system IP1. Perform an ISO-type measurement. The measured performance is called
P1 .

Step 5
Compare P1 with P0 . This yields run time efficiency values.

Terms for the run time efficiency are explained in Sections 10.3.2 and 10.3.3 .

The test bed cannot be chosen arbitrarily. Software is generally designed for an IP system
of a defined type, architecture and size that are assumed to be available to the user. The IP
system to be used greatly influences the software design. Software is always designed for
a particular hardware configuration, its system software components and a planned group
of users. Therefore the test bed has to be chosen to best represent the real environment for
which the software was defined.

10.3.2 Run time efficiency terms related to task types

ISO/IEC 14756 does not define nor describe software efficiency terms explicitly. Neither
does it explain how to compare the pair of measured performance values P0 and P1, that
represent the primary measurement result. This comparison is now described here.

The measured values are

 P0 = (B0, TME0, E0) and (10.1)
 P1 = (B1, TME1, E1) (10.2)

P0 represents 3*m values.

 B0 = (B0(1), B0(2),..., B0(m)) (10.3a)
 TME0 = (TME0(1), TME0(2),...,TME0(m)) (10.3b)
 E0 = (E0(1), E0(2),..., E0(m)) (10.3c)

P1 represents 3*m values.

 B1 = (B1(1), B1(2),..., B1(m)) (10.4a)
 TME1 = (TME1(1), TME1(2),...,TME1(m)) (10.4b)
 E1 = (E1(1), E1(2),..., E1(m)) (10.4c)

 112

The efficiency values are calculated by dividing each P1 component by the reference value,
i.e. by the according P0 component.

The throughput efficiency value of the type j tasks is

 ITH(j) = B1(j) / B0(j) . (10.5)

The mean execution time efficiency value of the type j tasks is

 IME(j) = TME0(j) / TME1(j) . (10.6)

The timeliness efficiency value of the type j tasks is

 ITI(j) = E1(j) / E0(j) . (10.7)

Each of these 3*m values indicates better efficiency if it is greater than 1, the same
efficiency if it is equal to 1 and worse efficiency if it is less than 1.

In a simple example let m, the number of task types, be 3. We consider only three of the
3*m=9 I-values. Suppose that

 ITH(2)<1 and IME(3)<1 and ITI(1)>1 .

This means that the actual software, compared with the reference software, has
 ● less (total) throughput for tasks of type 2;
 ● a greater mean execution time for tasks of type 3;
 ● and more timely throughput for tasks of type 1 .
This example shows that the actual software, compared with the reference software, is
more efficient for (at least) one criterion and less efficient for (at least) 2 criteria. 6 of the 9
criteria are not considered in this example.

 General rule:
 Only if all 3*m I-values are not less 1
 then the actual SW is generally not less efficient,
 or even more efficient, than the reference SW.

If at least some of the 3*m I values are greater than 1, the actual software is more efficient
than the reference software, but only for these criteria. This comparison often arises in
connection with new releases of application software or operating systems. It is important
to check whether a new release is at least as efficient as the previous release.

The set of 3*m efficiency values refers not only to the reference software but also to all
other components of the reference environment. Consequently the efficiency values
depend on the user entirety. If the user entirety changes, for instance by changing the

 113

number of users, some or all 3*m efficiency values can change. Consequently one
measurement is usually not sufficient for a comprehensive efficiency analysis. It is
necessary to design a set of reference environments by modifying the user entirety and
defining their workloads. But in most cases not all these workloads have to be completely
redesigned. It can be sufficient to modify only the WPS. Additional modifications of the
reference environment can be necessary. For instance, the hardware configuration or the
operating system release may have to be varied.

10.3.3 A software run time efficiency term related
 to the performance measure Nmax

In many cases detailed information resulting from the 3*m I values is not needed. Instead,
more global information is required. It can be helpful to use the performance measure Nmax
(see Chapter 8). Nmax is the maximum number of timely served users. Using this
performance measure the software efficiency measurement procedure has the same 5 steps
as described in Section 10.3.1. But steps 3 and 4 need to be modified. The single
measurement run has to be replaced by a measurement series (see Section 8.3). Step 3
gives the performance value Nmax0 and step 4 gives Nmax1 . The comparison in step 5 is
simple. The efficiency value Imaxuser results from dividing the Nmax values.

 Imaxuser = Nmax1 / Nmax0 (10.8)

If for instance Imaxuser equals 0.85 the actual software has a lower efficiency than the
reference software. This means that 15% of the users have to be logged off in order to
serve the remaining 85% timely. Or, if Imaxuser equals 1.20 the actual software has a
higher efficiency than the reference software. 20% more users can be served timely.

Understanding results like these is important when marketing new releases of operating
systems or application software.

10.3.4 comparison of the two methods

There are two main differences between the methods of Sections 10.3.2 and 10.3.3 .

 ● Number of components of the efficiency measure:
 The efficiency measure according to Section 10.3.3, Imaxuser ,
 consists of only one value. It is a scalar and easy to understand.
 The measure according to Section 10.3.2 contains 3*m I-values.
 It is more complex and produces very detailed information.

 ● Measurement costs and manpower:
 The measurement according to Section 10.3.3 needs two
 measurement series (using the same basic workload and varying
 the number of users). The measurement according to Section
 10.3.2 needs only two measurement runs (using the same
 workload). The cost is less. But, see last paragraph section 10.3.2,
 one pair of measurements may not be sufficient for a detailed
 efficiency analysis.

 114

10.4 Examples

10.4.1 Example 1: Application software efficiency

In this example there are two implementations of the application software, APS0 and
APS1, which have the same functionality. APS1 is the software to be measured and APS0
is the reference SW.

10.4.1.1 The measurement environment

The test bed for application software efficiency measurement consists of the components
as shown in Fig. 10-2 . The user entirety consists of 30 users. The workload has 3 task
types. Further details of the workload are unnecessary for this example and for brevity are
omitted.

 ● User entirety (example: 30 users)
 ● Place-keeper of application software
 ● Compilers and system software
 ● Operating system
 ● Hardware

Fig. 10-2 Test bed for application software efficiency measurement

Installing the application software APS0 into the test bed produces the reference IP system
IP0. Changing APS0 to APS1 produces the IP system IP1.

10.4.1.2 The task-oriented software efficiency values

This section deals with the efficiency values according to Section 10.3.2.

An ISO-type performance measurement using IP0 is performed. The measured
performance is P0 = (B0, TME0, E0) as shown in Fig. 10-3 .

 Task Type B0(j) TME0(j) E0(j)
 tasks/sec sec tasks/sec

 1 1.61 0.81 1.61
 2 0.85 2.52 0.85
 3 0.81 2.03 0.81

Fig. 10-3 The performance of the reference system IP0
 (i.e. using the reference application software)

The reference application SW APS0 is then changed to the actual software APS1 which is
being tested for efficiency. Compilers, system software, operating system and hardware all
remain the same. This produces the system IP1. An ISO-type performance measurement is

 115

performed on IP1. The measured performance is P1 = (B1, TME1, E1) as shown in
Fig. 10-4 .

 Task Type B1(j) TME1(j) E1(j)
 tasks/sec sec tasks/sec

 1 1.02 2.53 0.50
 2 0.41 5.02 0.35
 3 0.61 9.01 0.60

Fig. 10-4 The performance of the system IP1
 (i.e. using the actual application SW)

The software efficiency values of APS1 result from the pair of measured performance
values P0 and P1. The computed values (see equations (10.5) to (10.7) in Section 10.3.2)
are shown in Fig. 10-5 .

 Throughput efficiency:

 Task Type 1 ITH(1) = 1.02 / 1.61 = 0.63
 Task Type 2 ITH(2) = 0.41 / 0.85 = 0.48
 Task Type 3 ITH(3) = 0.61 / 0.81 = 0.75

 Mean response time efficiency:

 Task Type 1 IME(1) = 0.81 / 2.53 = 0.32
 Task Type 2 IME(2) = 2.52 / 5.02 = 0.50
 Task Type 3 IME(3) = 2.03 / 9.01 = 0.22

 Timeliness efficiency:

 Task Type 1 ITI(1) = 0.50 / 1.61 = 0.31
 Task Type 2 ITI(2) = 0.35 / 0.85 = 0.41
 Task Type 3 ITI(3) = 0.60 / 0.81 = 0.75

Fig. 10-5 Efficiency values of the application software APS1

The efficiency values are significantly below 1. The values show that the application
software APS1 is much less efficient than the reference software. The throughput is up to
52% lower (task type 2). The mean execution times are up to 78% longer (task type 3). The
timely throughput is up to 69% lower (task type 1).

An important question is, whether the workload of the test bed was chosen to be too large
with respect to the hardware speed. The answer is, that it was not too large because IP0
fulfilled all user requirements. For brevity the 3*m = 3*3 = 9 performance rating
values (R values, see Section 7.7.1) of IP0 are not printed here, but all are not less than 1.

 116

The workload is appropriate. With another workload the test bed might have been
inappropriate.

Here is a useful tip. From Fig. 10-3 it may seen at a glance that for each task types the E0
value is not less than the B0 value. I.e. all timeliness rating values (see equation (7-12) in
Section 7.6) are not less 1. As this is so, it is a good omen for the system being satisfactory
in fulfilling also the remaining user requirements. Applying this simple procedure to Fig.
10-4 we see, also at a glance, that the 30 users are not timely served when using the
application software APS1. For each task type the E0 value is less than the B0 value.

10.4.1.3 The Nmax oriented software efficiency value

This section deals with the efficiency value according to Section 10.3.3. The test bed and
the measured systems IP0 and IP1 are the same as in Section 10.4.1.2 . But instead of
measuring P0 and P1 we have to measure the maximum number of timely served users.

Firstly we install the reference software APS0 on the test bed. We have to determine the
basic workload (see Section 8.2). Then a measurement series is performed by increasing
stepwise the total number of users and Nmax0 determined. In our example Nmax0 equals 48.

The application SW APS0 is replaced by APS1. A measurement series is performed
determining Nmax1 . In our example Nmax0 equals 24 .

The Nmax related SW efficiency (according to equation (10.8) in Section 10.3.3) is shown
in Fig. 10-6.

 Imaxuser = 24 / 48 = 0.50

Fig. 10-6 Nmax related software efficiency value of the application software APS1

This example shows that the actual application software APS1 is significantly less efficient
than the reference SW APS0. If using APS1 the IP system can only serve 50% of the users
timely (compare with APS0).

The two measured Nmax values confirm the "tip" given at the end of Section 10.4.1.2 . The
30 users in that workload are timely served when using APS0 (because Nmax0 = 48 is
greater than 30). The 30 users cannot be served timely when using APS1 (because
Nmax1 = 24 is less than 30).

10.4.2 Example 2: System software efficiency

This example compares two sets of system software named SS-nU and SS-U. SS-U
contains a UNIX based operating system with its system utilities and compilers etc. SS-nU
contains a non UNIX based operating system also with its system utilities and compilers
etc. The workload is the ISO workload "COMPCENTER1, Version M" as defined in
ISO/IEC 14756 (see Section 11.3.2 of this book). This workload can be used for different
operating systems. It was intentionally written for easy migration between different

 117

operating systems. SS-U is the system software under test. SS-nU is the reference system
software.

10.4.2.1 The measurement environment

The test bed consists of the components shown in Fig. 10-7 .

 ● user entity (example: 15 users)
 ● application SW
 ● place-keeper of
 a) Compilers and system utilities
 and b) Operating system
 ● HW

Fig. 10-7 Test bed for system software efficiency measurement

The user entirety in our example consists of 15 users. The workload has 5 task types. For
details see Section 11.5.1 .

Installing the system software SS-nU onto the test bed produces the reference IP system
IP0. Changing SS-nU to SS-U produces the IP system IP1.

10.4.2.2 The task-oriented software efficiency values

This section deals with the efficiency values according to Section 10.3.2.

An ISO-type performance measurement using IP0 is performed. The measured
performance is P0 = (B0, TME0, E0). Its values are shown in Fig. 10-8 .

 Task Type B0(j) TME0(j) E0(j)
 tasks/sec sec tasks/sec

 1 1.1024 1.74 0.1024
 2 0.0512 1.80 0.0512
 3 0.0512 4,67 0.0512
 4 0.1024 1.48 0.1024
 5 0.1024 1.30 0.1024

Fig. 10-8 The performance of the reference system IP0
 (i.e. using the reference system software)

Then the reference system software SS-nU is changed to the actual system software SS-U.
The application software (written in higher languages) and the hardware all remain the
same. This produces the system IP1. An ISO-type performance measurement using IP1 is
performed. The measured performance is P1 = (B1, TME1, E1). Its values are shown
in Fig. 10-9 .

 118

 Task Type B1(j) TME1(j) E1(j)
 tasks/sec sec tasks/sec

 1 0.1100 0.72 0.1100
 2 0.0550 1.35 0.0550
 3 0.0550 1.95 0.0550
 4 0.1100 0.86 0.1100
 5 0.1100 0.80 0.1100

Fig. 10-9 The performance of the system IP1
 (i.e. using the actual system software)

The software efficiency values of SS-U result from the pair of measured performance
values P0 and P1 . The computed values (see equations (10.5) to (10.7) in Section 10.3.2)
are as shown in Fig. 10-10 .

 Throughput efficiency

 Task Type 1 ITH(1) = 0.1100 / 0.1024 = 1.074
 Task Type 2 ITH(2) = 0.0550 / 0.0512 = 1.074
 Task Type 3 ITH(3) = 0.0550 / 0.0512 = 1.074
 Task Type 4 ITH(4) = 0.1100 / 0.1024 = 1.074
 Task Type 4 ITH(5) = 0.1100 / 0.1024 = 1.074

 Mean response time efficiency

 Task Type 1 IME(1) = 1.74 / 0.72 = 2.4167
 Task Type 2 IME(2) = 1.80 / 1.35 = 1.3333
 Task Type 3 IME(3) = 4.67 / 1.95 = 2.3949
 Task Type 4 IME(4) = 1.48 / 0.86 = 1.7209
 Task Type 5 IME(5) = 1.30 / 0.80 = 1.6250

 Timeliness efficiency

 Task Type 1 ITI(1) = 0.1100 / 0.1024 = 1.074
 Task Type 2 ITI(2) = 0.0550 / 0.0512 = 1.074
 Task Type 3 ITI(3) = 0.0550 / 0.0512 = 1.074
 Task Type 4 ITI(4) = 0.1100 / 0.1024 = 1.074
 Task Type 5 ITI(5) = 0.1100 / 0.1024 = 1.074

Fig. 10-10 Software efficiency values of the system SW SS-U

All efficiency values are greater than 1. This shows that SS-U is more efficient than SS-
nU. The throughput is 7.4% % better (for all task types). The mean response times are
from 33% (task type 2) to 141% (task type 1) better. The timely throughput is 7.4% (for all
task types) greater.

 119

As in the example in Section 10.4.1, the question is whether the workload of the test bed
was chosen to be too large with respect to the hardware speed. The answer is that it was
not too large because IP0 fulfilled all user requirements. For brevity the 3*m = 3*3 = 9
performance rating values (R values, see Section 7.7.1) of IP0 are not printed here, but all
are not less than 1.

Compared with the Nmax values the 15 users are low for both IP0 and IP1 (Nmax0 equals 18
and Nmax1 equals 45, see Section 10.4.2.3). Neither system is too heavily loaded. The weak
load is the reason for the following fact: although the response times of IP1 are much more
better as those of IP0 , the throughput of IP1 is only 7.4% better. If the test bed had
significantly more than 15 users the situation would be certainly very different.

Note 1: From Fig. 10-10 it can be seen that ITH values of all task types are the same. This is
no accident. It is a proper effect of the ISO workload "COMPCENTER1, Version M".
Independent of the SUT to be measured the B values always have the ratio 2:1:1:2:2 . This
is due to the definition of the chain probabilities and to the fact that there is only one user
type. ■

Note 2: From Fig. 10-10 it can be seen that all ITI values are also the same. This is due to
the same reason above and because of the following. The 15 users are lower than Nmax for
both IP0 and IP1. All users are served timely and B(j) equals E(j) for each j. ■

10.4.2.3 The Nmax oriented SW efficiency value

This section deals with the efficiency value according to Section 10.3.3. The test bed and
the measured systems IP0 and IP1 are the same as in Section 10.4.2.2. But instead of
measuring P0 and P1 we have to measure the maximum number of timely served users.

Firstly we install the reference system software SS-nU on the test bed. We have to
determine the basic workload of "COMPCENTER1, Version M" (see Section 8.2). Then a
measurement series is performed by increasing stepwise the total number of users, and
Nmax0 determined. In our example Nmax0 equals 18.

The system software SS-nU is replaced by SS-U. A measurement series is performed
determining Nmax1 . In our example Nmax0 equals 45.

The Nmax related software efficiency is (according to equation (10.8) in Section 10.3.3)
shown in Fig. 10-11.

 Imaxuser = 45 / 18 = 2.50

Fig. 10-11 Nmax related software efficiency value of the system software SS-U

This example shows that the actual system software SS-U is significantly more efficient
than the reference software SS-nU. If using SS-nU the IP system serves 150% additional
users timely (compare with SS-nU).

 120

The two measured Nmax values confirm the "tip" given at the end of Section 10.4.1.2 . The
15 users used in that workload are served timely when using both SS-nU (because 15 <
Nmax0) and SS-U (because 15 < Nmax1).

10.5 Exercises

Exercise 1: Application software efficiency measurement using
 task-oriented software efficiency values.
 Example (1)

The application software:
 ● There are 3 activity types. They have the following functions. A defined text file is
copied to the output file of the task. Additionally a search will be performed for all lines of
the text file containing the letter "a" (activity type 1) or "b" (activity type 2) or "c" (activity
type 3). The search result will be written in the output file.
 ● This application software is implemented by the set of the 3 shells TT1a, TT2a and
TT3a of Exercise 1 in Chapter 8, Section 8.6 . Two different implementations can be
simulated by use of different REP values. Applying a small REP value yields short run-
times of the tasks. Applying a large REP value yields long run-times of the tasks. The basic
function of this application software is always the same: copy the text file, search and write
the result in the output file.
 ● Therefore this application software can simulate different implementations, depending
on the REP value, but always having the same functionality.

Part 1
Use the user entirety of Exercise 1 in Chapter 8, Section 8.6 with Ntot = 10 users. The
computer to be used is the same as in that exercise. The input data of the application
software is also the same. For the operating system use LINUX. Define the test bed
according to Figure 10.2 .

Part 2
Use REP=30 for the representation of the reference application software. This means
installing TT1a, TT2a and TT3a and stipulating that in the reference measurement REP
equals 30. This yields the reference system IP0. Perform the reference measurement
producing P0 .

Part 3
Use REP=50 for representing the actual software to be measured. Replacing the reference
application software by the actual software merely means stipulating that REP equals 50 in
the measurement. Perform the measurement producing P1.

Part 4:
Compute the task-oriented run-time efficiency values.

 121

Exercise 2: Application software efficiency measurement using
 task-oriented software efficiency values.
 Example (2): changed reference application software
 and changed actual application software.

The application software: Same as in Exercise 1.

Part 1
The task is the same as Part 1 of Exercise 1, but Ntot = 6 users.

Part 2
Use REP=50 for the representation of the reference application software. This yields the
reference system IP0. Perform the reference measurement producing P0 .

Part 3
Use REP=30 for the representation of the actual software to be measured. Perform the
measurement producing P1 .

Part 4
Compute the task-oriented run-time efficiency values.

Exercise 3: Application software efficiency measurement using
 Nmax oriented software efficiency values,
 Example (1).

Use the scenario of Exercise 1. Determine the value of the Nmax oriented runtime efficiency
term Imaxuser .

Exercise 4: Application software efficiency measurement using
 the Nmax oriented software efficiency values.
 Example (2): changed reference application software
 and changed actual application software.

Use the scenario of Exercise 2. Determine the value of the Nmax oriented runtime efficiency
term Imaxuser .

Exercise 5: Operating system efficiency measurement (using
 Nmax oriented efficiency values)

Note: Before solving this exercise read Chapter 11 and solve Exercises 1 and 2 in
Section 11.6 .

 122

Preparation:
Choose for the SUT a computer on which both a UNIX-type and a non-UNIX type
operating system are available. The UNIX-type operating system is called OpSU and the
non-UNIX system OpSnU. Make available an ISO-type RTE which can perform an ISO-
type measurement with the OpSU-based SUT as well as with the OPSnU-based SUT.

Part 1
Use the ISO workload CC1. If necessary perform an OpSU migration in consideration of
the migration rules (see Sections 11.4, 11.5 and 12.11).

Part 2
Migrate the ISO workload CC1 for OpSnU in consideration of the migration rules (see
Sections 11.4, 11.5 and 12.11).

Part 3
Define the test bed according Figure 10-7 .

Part 4
Perform measurement series with each of the two systems and determine the Nmax values
for each of the workload versions M, I, B .

Part 5:
Taking the OpSnU for the reference system compute the Nmax oriented software efficiency
values Imaxuser of the OpSU .

Solutions
For solutions see file
 CD/Solutions/Solutions-Section10-5.pdf .

 123

11 The ISO workloads

Annex F of ISO/IEC 14756 contains six ISO-type workloads. They are complete and ready
for use for performing measurements. They also can be used for learning and
understanding the ISO workload structure. The examples free the beginner from having to
construct a workload before practising the ISO method. The 6 ISO workloads are (with
permission of ISO) contained in the CD-ROM which is part of this book. They are
explained in detail in Sections 11.2 and 11.3.

11.1 Purpose of the workloads and format

The format is briefly explained here. The table of contents of the workload is defined in
Annex C of ISO/IEC 14756 which is a normative part of the standard. All workloads have
to be written in this format. There are 6 sections:

 1. Workload parameter set (WPS)
 2. Application programs
 3. Operating system command procedures
 4. Computational results
 5. Stored data
 6. Statistical and accuracy parameters,
 called "advanced parameters" in Section 2.9 of this book

The machine readable representation of an ISO workload is a UNIX directory. It has six
subdirectories. Additionally there is an introductory file and a subdirectory which contains
tips for implementation. Therefore a workload directory contains one file and 7
subdirectories.

The workload directory structure is as follows (where "wln" represents the abbreviated
name of the workload directory).

wln/General
This file contains a short description and an overview of the workload.

wln/C1_WPS/
This directory contains the WPS (workload parameter set) in a file also named WPS. There
are 8 parts as follows.
 ● Basic parameters (see Section 2.6)
 ● Activity types (see Sections 2.3 and 2.7.1)
 ● Task types (see Sections 2.3 and 2.7.2)
 ● Timeliness functions (see Sections 2.5 and 2.7.3)
 ● chain types (see Sections 2.2, 2.4 and 2.7.4)
 ● Relative chain frequencies matrix (see Section 2.7.5)
 ● Preparation time mean values matrix (see Section 2.7.6)
 ● Preparation time standard deviations matrix (see Section 2.7.7)

The WPS is typically a text file having 8 sections. An example is shown in Fig. 11-1 . If
the actual used RTE cannot read this text file it has to be rewritten manually in the format
which the RTE can read.

 124

 Workload parameter set

 1. Basic parameter values

 (1) Total number of different user types: n = 3 ;
 (2) Total amount of emulated users of each type:
 N_user(1) = 25 ; N_user(2) = 40 ; N_user(3) = 20 ;
 (3) Total number of different activity types: w = 4 ;
 (4) Total number of different timeliness functions: p = 3 ;
 (5) Total number of different task types: m = 5 ;
 (6) Total number of different chain types: u = 4 ;

 2. Activity type definitions

(1)Activity type number:	1	2	3	4
 (2) The logical meaning | | | | |
 of the input: | *) | **) | **) | **) |
 (3) The length (number) | | | | |
 of characters) of | | | | |
 the input string: | 5 | 8 | 6 | 4 |
 (4) The input string | | | | |
 itself: | shb11 |search q| NzzzAB | A5-9 |
 (5) Activity type | | | | |
 input variation: | none | none |yes ***)| none |

 *) Name of the shell script which has to be run.
 **) Input string to be entered to the program.
 ***) zzz is a string of three random chosen decimal digits.

 3.Task type definitions

(1) Current number j of the task type:	1	2	3	4	5
 (2) Number of the activity type: | 1 | 2 | 4 | 4 | 3 |
 (3) Value of the task mode M(j): : | 1 | 1 | 1 | 0 | 0 |
 (4) Type number of the timeliness function: | 1 | 2 | 2 | 3 | 1 |

 4.Definitions of the timeliness functions

(1) Order number of the timeliness function:	1	2	3
 (2) Number of time classes of this function: | z=2 | z=3 | z=2 |
 --|---------|---------|---------|
 (3) z couples of values g_t and r_t, where g_t| | | |
 is the time limit and r_t is the maximum | | | |
 accepted relative frequency: g_t(1):| 25 sec | 50 sec | 2.0 sec |
 r_t(1):| 0.90 | 0.90 | 0.90 |
 | | | |
 g_t(2):| 62 sec | 100 sec | 4.0 sec |
 r_t(2):| 1.00 | 0.95 | 1.00 |
 | | | |
 g_t(3):| | 250 sec | |
 r_t(3):| | 1.00 | |
 --|---------|---------|---------|

Fig. 11-1 Example of a WPS

 125

 Workload parameter set (cont.)

 5.Definitions of chain types

(1) The current number l of the chain type:	1	2	3	4
 (2) The length L_chain(l) of the chain: | 3 | 1 | 2 | 4 |
 --|-----|-----|-----|-----|
 (3) The sequence of the task type numbers: | 1 | 2 | 3 | 4 |
 | 3 | | 3 | 3 |
 | 1 | | | 2 |
 | | | | 2 |
 --|-----|-----|-----|-----|

 6.Definition of the chain probabilities q(i,l)
 --

 l | q(1,l) | q(2,l) | q(3,l) | i = number of user type
 ---|--------------------------| l = number of chain type
 1 | 0.25 | 0.25 | 0.05 |
 2 | 0.125 | 0.00 | 0.35 |
 3 | 0.125 | 0.00 | 0.60 |
 4 | 0.50 | 0.75 | 0.00 |
 ---|--------|--------|--------|

 7.Preparation time mean values h(i,j)

 j | h(1,j) | h(2,j) | h(3,j) | i = number of user type
 ---|--------|--------|--------| j = number of task type
 1 |25.0 sec| 5.5 sec|17.0 sec|
 2 |36.0 sec|20.5 sec|10.0 sec|
 3 |40.0 sec|60.0 sec| 5.0 sec|
 4 |40.0 sec| 3.0 sec| 2.0 sec|
 5 |40.0 sec| 5.5 sec|90.0 sec|
 ---|--------|--------|--------|

 8.Preparation time standard deviations s(i,j)

 | s(1,j) | s(2,j) | s(3,j) | i = number of user type
 ---|--------|--------|--------| j = number of task type
 1 | 5.0 sec| 1.5 sec| 6.0 sec|
 2 |10.0 sec| 5.0 sec| 2.5 sec|
 3 |10.0 sec| 0.0 sec| 0.5 sec|
 4 |12.0 sec| 0.0 sec| 0.0 sec|
 5 |12.0 sec| 0.5 sec| 1.0 sec|
 ---|--------|--------|--------|

Fig. 11-1 (cont.) Example of a WPS

 126

wln/C2_AppPrgs/
This directory contains all application programs used by the emulated users (see Section
2.8). The programs are ready for use on the SUT (either as an executable or the complete
source code).

wln/C3_OSCP/
This directory contains the operating system command procedures (see Section 2.8). They
are listed in full text, ready for use.

wln/C4_RES/
This directory specifies the correct values of all computational results (see Sections 2.8 and
2.9.1). There are two classes of activity types, depending on their input and computational
results.
 ● Results of activity types having 'fixed input – fixed output':
 The input is the same whenever a task of this type is submitted and
 also the computational result. The result of the computation, in the
 case of correct operation of the SUT according to the input has to
 be listed for all these task types.
 ● Results of activity types having 'input variation':
 All variations of input or all rules have to be listened. Either
 all modified results of variations of input have to be listed,
 or all rules about how the output depends on the input have to
 be specified comprehensively and uniquely. So all correct results have
 to be described.

wln/C5_SData/
All data needed by the application programs, that are not contained in the input strings of
the task types, are presented here (see Section 2.8). They are presented completely and in
the final form ready to use on the SUT.

wln/C6_SPAP/
This directory contains the criteria for validation of a measurement. There are two classes.
 ● Subdirectory 'precision' contains the criteria for RTE accuracy (see Section 2.9.2).
 These are the DELTA values:
 x) DELTAq , for the relative chain frequencies
 x) DELTAh , for the preparation time mean values
 x) DELTAs , for the preparation time standard deviations
 ● Subdirectory 'StatPar' contains the criteria for the statistical significance of the
 measurement (see Section 2.9.3). These are:
 x) the confidence coefficient ALPHA
 x) the m confidence intervals 2*d(j) of the mean execution times
 of the m task types (or drel, see Section 2.9.3).

wln/Prep/
This directory (in simple situations this might be a file) contains implementation tips or
directions of how to make the application software on the SUT ready for a measurement
run; for example how to use a data generator which converts the files of correct
computational results into the specific data format of the actual SUT.

Final remark concerning the ISO workload structure:
The ISO/IEC 14756 is supplied on a CD. The six ISO workloads named SIMPLOAD1,
SIMPLOAD2, SIMPLOAD3, COMPCENTER1, COMPCENTER2, COMPCENTER3 and

 127

described in Annex F, are contained in directories named SL1, SL2, SL3, CC1, CC2, CC3
on the CD. These workload directories were created using a UNIX-SVR4 operating
system. Important: Do not open or use these directories if using of another operating
system, otherwise the data may be corrupted, the computational results in directory
C4_RES can be distorted, programs may not run or produce incorrect results. When
migrating a workload to a SUT having a non-UNIX operating system the workload
directory has to be read by a UNIX system and converted for the new operating system
(see Sections 11.4 and 11.5).

11.2 The Simple Workloads

11.2.1 General

Included in Annex F of ISO/IEC 14756 are three workloads called SIMPLELOAD1,
SIMPLOAD2, SIMPLOAD3. These workloads are primarily intended as examples for
showing the structure of ISO-type workloads. They are not really intended for measuring
and rating the performance of current computers.

11.2.2 SIMPLOAD1

This workload is found in the directory SL1/ in Annex F. It has a complex WPS but uses
very simple activity types. This workload is intended for
 ● gaining a better understanding of the ISO measuring method
 ● testing the functional correctness of an RTE

Although this workload is written for SUTs with a UNIX-SVR4 type operating system, it
can be easily migrated to any other multi-user operating system. The application program
is written in C, but it can be easily converted to another programming language.

11.2.3 SIMPLOAD2

This workload is found in the directory SL2/ in Annex F. It uses very simple activity
types. This workload is intended for
 ● gaining a better understanding of the ISO measuring method
 ● testing the functional correctness of an RTE

This workload is very similar to SIMPLOAD1 but it has only one user type. Therefore the
number Ntot of emulated users can be modified by steps of 1. This is contrary to
SIMPLOAD1, the number Ntot of emulated users can be modified by steps of 7 .
SIMPLOAD2 may be used to show the effect of varying the number of users by steps of 1.

Although this workload is written for SUTs with a UNIX-SVR4 type operating system, it
can be easily migrated to any other multi-user operating system. The application program
is written in C, but it can be easily converted to another programming language.

 128

11.2.4 SIMPLOAD3

This workload is found in the directory SL3/ in Annex F. It only differs from
SIMPLOAD2 in having less efficient programs, but the same functionality. The effect of
less run-time efficiency of the application software may be shown by comparing the
measurement and rating results with those of the workload SIMPLOAD2 (See Chapter 10,
Measurement of software run-time efficiency).

Although this workload is written for SUTs with a UNIX-SVR4 type operating system, it
can be easily migrated to any other multi-user operating system. The application program
is written in C, but it can be easily converted to another programming language.

11.3 The Computer Centre Workloads

11.3.1 General

Included in Annex F of ISO/IEC 14756 there are three workloads called COMPCENTER1,
COMPCENTER1 and COMPCENTER3. They are found in the directories CC1/, CC2/
and CC3/ . Contrary to the SIMPLOADs they are primarily intended for performance
measurement as well as for demonstration. These workloads use flat files in order to be
independent from any data base system. Although the application software seems to be
simple, these workloads have proved suitable for the performance measurement of
computers of all sizes. This is possible by adjusting the CPU loading with a control
variable named REP (replication factor).

11.3.2 COMPCENTER1
This workload uses COBOL and FORTRAN application programs for activity types. It
represents a job stream profile typical for computer centre operation with program
development and heavy production work. The workload has 5 task types. The CPU loading
of the workload can be adjusted by a control variable called REP .

This workload has only one user type. The advantage of this is that the number Ntot of
users can be modified by steps of 1. This workload can also be used to show the effect of
varying the number of emulated users by steps of 1. By performing a series of
measurements with increasing numbers of users it is possible to determine the maximum
number of timely served users Nmax with a precision of 1. This workload is written for
SUTs using a UNIX-SVR4 type operating system. But it can be easily migrated to any
other multi-user operating system. For more details see Section 11.5.1.

There are three versions of this workload, "Version M", "Version I" and "Version B" (see
Section 11.5.1).

11.3.3 COMPCENTER2
The characteristics of this workload are similar to those of COMPCENTER1, but the
application programs are written in C, instead of COBOL and FORTRAN. In contrast to
COMPCENTER1, a special design of the WPS demonstrates how to realise batch mode for
defined task types. The CPU loading of the workload can be adjusted by a control variable
called REP . This workload is written for SUTs using a UNIX-SVR4 type operating

 129

system. But it can be easily migrated to any other multi-user operating system. For more
details see Section 11.5.2.

11.3.4 COMPCENTER3

The application program of this workload is a simple OLTP system (OLTP online
transaction processing). The workload represents a user entirety which is typical for OLTP
computer centre operation. For reasons of simplicity there is no use of a database system.
The application uses "flat files".

This workload has 2 user types. There are 4 times as many type 2 users as type 1 users, or

 Nuser (2) / Nuser (1) = 4 .

This workload can also show the effect of varying the number of users. Multiplying both
Nuser (1) and Nuser (2) by factors of 2, 3, 4, ... , the total number of users increases in
increments of 5. By performing a series of measurements using increasing numbers of
users the maximum number Nmax of timely served users can be estimated. In most cases
there is only a small disadvantage when the number of users can only be varied by steps
of 5. This is due to the fact that a SUT typically serves a great number of users of this
workload. Therefore the relative failure of the estimated Nmax arising from the increase by
steps of 5 is not too dramatic. The CPU loading of the workload can be adjusted by a
control variable called REP. This workload is written for SUTs using a UNIX SVR4 type
operating system. But it can be easily migrated to any other multi-user operating system.
The application software is available in both COBOL and C. For more details see Section
11.5.3.

11.4 Migration of ISO workloads to other operating systems

The ISO workloads are written for SUTs using a UNIX-SVR4 operating system. They can
be easily migrated to other UNIX type operating systems, and also to any multi-user
operating system.

"Migration of an ISO-type workload" does not mean converting it somehow to a version
which runs on the new operating system. It means creating an implementation which
ensures that all steps are converted without changing the logical structure. A step shall
neither be changed nor omitted. Steps shall not be merged to a composite step.

The migration rules are:
1. The directory structure of the workload must not be changed in any detail.
2. The contents of the file 'wln/General' have to be adapted to the new operating
 system. The name of the person and the organisation responsible for the migration have
 to be cited together with the date of the migration. The original version has to be cited.
 A reference has to be given where the complete original version is available for public
 access. This is very important if the source version for the migration was not an
 original ISO workload.
3. The contents of the directory 'wln/C1_WPS/' have to remain unchanged in all details.
4. The contents of the application program directory 'wln/C2_AppPrgs/' must not be
 changed. The programs must not be modified at all. No changes of the program logic or

 130

 the processing sequence are allowed. In case of executables need to be recompiled, the
 same compiler options as for the original executables must be used.
5. The contents of the operating system command procedures directory ‘wln/C3_OSCP/’
 will most likely have to be changed because of the new command language. The
 command procedures will have to be converted provided that there is no change in the
 sequence of steps and that each step performs exactly the same function. Changes of
 symbolic names, such as file names and environment variables, are allowed. But these
 must not influence the program logic or the command procedure sequence logic.
6. The contents of the result directory 'wln/C4_RES/' must not be changed.
7. The contents of the stored data directory 'wln/C5_SData/' must not be changed.
8. The contents of the accuracy criteria directory 'wln/C6_SPAP/' must not be changed.
9. The contents of the preparation tips directory 'wln/Prep/' usually has to be adapted
 to the new operating system. But only unavoidable changes may be made provided
 they do not change the process defined in the original workload.
10. If, in course of the migration, any deviation from the rules 1 to 9 has occurred, the
 following must be documented in file ‘wln/General’:

 a) Explicit declaration of why, where and how the workload was modified in the
 course of the migration.
 b) Detailed explanation of all changes.

11.5 Important details for ISO workload migration

Note: The following Sections 11.5.1 to 11.5.3 describe details of the workloads that are
important for migration. Additionally they can be used as tips on how to migrate other ISO
type workloads, for instance the ISO’s SIMPLOADs (see Section 11.2) as well as
individual ISO-type workloads (see Chapter 12). ■

11.5.1 Workload COMPCENTER1

11.5.1.1 Introduction

The ISO workload COMPCENTER1 was originally written for the operating system
UNIX-SVR4. The changes to be made when migrating to another operating system
concern primarily the operating system command procedures (OSCPs). Few changes will
be needed to the rest of the workload. For transferring the OSCPs into the new command
language they have to be analysed for their logical steps. These steps have to be rewritten
in the new command language (see Section 11.5.1.2).

The workload contains 5 activity types, represented by 5 OSCPs (ta's) as below. The input
string (see Fig. 2-9 in Chapter 2) of each is the name of a command procedure.

● "ta1": This simulates a programmer editing his program source. As an example a text
 is chosen which looks like a FORTRAN program. The logical meaning of the text is
 unimportant, but the text must no be changed. The only goal is to execute defined text
 operations like text input, search, replace etc. using a defined text.
● "ta2": This simulates a programmer testing his COBOL program. He compiles it and
 then starts the generated executable. The program is intended to represent a business
 task..

 131

● "ta3": This simulates a programmer testing his FORTRAN program. He compiles it
 and then starts the generated executable. The program is intended to represent a
 technical or scientific task.
● "ta4": This simulates a computer centre job (coming from a FORTRAN program). It
 executes a tested executable. The job is intended to represent a technical or scientific
 task.
● "ta5": This simulates a computer centre job (coming from a COBOL program).
 It executes a tested executable. The job is intended to represent a business task.

The WPS of this workload defines a very simple construction of its task types as follows.
Activity type x is only used by task type x (x = 1, 2, ..., 5). Task types 1, 2 and 3 use
M = 1. Task types 4 and 5 use M = 0 . M is the task mode. This construction tempts the
reader to guess that generally "ta1", "ta2" and "ta3" are interactive jobs and "ta4" and
"ta5" are batch jobs. But it is not so. Please remember that the task mode values M = 0 or
1 are not generally identical with the traditional modes "batch" or "interactive" (see Section
2.3 and compare to Section 11.5.2.1). Therefore whether a task is interactive or placed to
the background depends on the task mode of the preceding task. This is the situation when
the workload COMPCENTER1 is operated in its usual version called "Version M". Please
do not confuse this name ‘Version M’ with the task mode variable M.

The workload COMPCENTER1 has two additional versions, "Version I" and "Version B".
"Version I" activates only the task types 1, 2 and 3. This is achieved by setting the relative
chain frequencies q(1,4) and q(1,5) to zero. With "Version I" all tasks submitted to
the SUT use the task mode with the value M = 1. This causes all tasks to operate identically
to the traditional mode "interactive". Contrary to "Version I" the "Version B" activates
only the task types 4 and 5. This is achieved by setting the relative chain frequencies
q(1,1), q(1,2) and q(1,3) to zero. With "Version B" all tasks submitted to the SUT
use the task mode with the value M = 0. This causes all tasks to operate identically to the
traditional mode "batch".

Studying these details will provide a better understanding of the workload and its OSCPs.

11.5.1.2 The logical steps of the OSCPs of COMPCENTER1

All logical steps of the 5 OSCPs are defined by its original text in Appendix F of ISO/IEC
14756, written in UNIX command language. They have to be migrated to the new
operating system following exactly the migration rule 5 of Section 11.4 . For providing a
better understanding the steps they are shortly described in the Appendix A of this book,
see Section 1 in file
 CD/Supplement-to-ISO14756.pdf .

For additional information concerning the preparation procedures and the installation of
the workload COMPCENTER1 on the SUT see ISO original text in directory
 CD/iso14756-orig-workloads/ .

 132

11.5.1.3 Some explanations

11.5.1.3.1 Preparation times (think times) and task modes of
 the 5 task types
Each task type consists of a sequence of steps. To facilitate using the RTE and the
workload, the preparation times are somewhat simplified and treated as follows. There are
no preparation times between the steps. Instead the sum of them is represented by the
preparation time before the submission of each task. Consequently, the preparation times
refer to each of the task types as one complete action and not to its separated steps (see
Special case 1 in Section 2.7.1). The mean values of the 5 task types and their
corresponding standard deviation values are found in the WPS (in the directory
CC1/C1_WPS/).

11.5.1.3.2 Execution times (response times) of the five task types

The execution times are treated analogously to the preparation times. No separate
execution times of each step of a task type are measured. Instead an execution time is
defined which refers to the complete action of the task type and not to its separated steps
(see Special case 1 in Section 2.7.1).

11.5.1.3.3 The function "<process#>"

The penultimate step of OSCP is to copy the computational result into a file of the user
home directory. These files have the suffix <process#>. This suffix is the actual UNIX
process number of the SUT. The suffix ensures that all stored files have different names,
even if there is a large number of users and each user executes a task type many times.
When migrating a workload to a non-UNIX operating system it is important to check if
this system supports the function of accessing to system wide unique process numbers. If
not, a new solution has to be developed which ensures that all computational results are
stored and none of these files will be overwritten.

11.5.1.3.4 Submission of the value of REP to the SUT

The replication factor "REP" (in the ISO UNIX version of the workload COMPCENTER1)
is transferred from the RTE to the SUT by an UNIX environment variable. The
implementation of this feature is somewhat dependent on the realisation of the RTE. If
migrating the workload to a new operating system this solution will eventually not work.
Then a new solution has to be developed. It is important that this solution does not change
the CPU loading of the SUT compared with the generic ISO workload version.

11.5.1.3.5 Size of the tasks of COMPCENTER1

Typically, computer centre production jobs run for a long time, ranging typically from a
quarter of an hour to several hours. If such tasks occur in a workload, the rating period is
very long in order to include a sufficient number of such tasks (necessary for sufficient
statistical significance of the measured performance values). In order to avoid extremely
long rating periods this workload contains, instead of a few long production jobs, a large
number of short production jobs. Experience has shown that a rating period length of
significantly less than one hour is sufficient.

 133

11.5.2 Workload COMPCENTER2

11.5.2.1 Introduction

The ISO workload COMPCENTER2 (summarised in Section 11.3.3) was originally
written for the operating system UNIX-SVR4. This workload is similar to
COMPCENTER1 but instead of FORTRAN and COBOL programs it uses programs
written in the language C. The changes to be made when migrating to another operating
system concern primarily the OSCPs. Few changes will be needed to the rest of the
workload. For transferring the OSCPs into the new command language they have to be
analysed for their logical steps. These steps have to be rewritten in the new command
language (see Section 11.5.2.2).

The workload contains 6 activity types, represented by 6 OSCPs (ta's) as below. The input
string (see Fig. 2-9 in Chapter 2) of each is the name of a command procedure.

● "ta1": (same as ta1 of COMPCENTER1) This simulates a programmer editing his
 program source. As an example a text is chosen which looks like a FORTRAN
 program. The logical meaning of the text is unimportant, but the text must not be
 changed. The only goal is to execute defined text operations like text input, search,
 replace etc. using a defined text.
● "ta2": This simulates a programmer testing his C program. He compiles it and then
 starts the generated executable. The program is intended to represent a business task.
● "ta3": This simulates a programmer testing another C program. He compiles it and
 then starts the generated executable. The program is intended to represent a technical or
 scientific task.
● "ta4": This simulates a computer centre job (coming from a C program). It executes a
 tested executable. The job is intended to represent a technical or scientific task.
● "ta5": This simulates a computer centre job (coming from a C program). It executes a
 tested executable. The job is intended to represent a commercial task.
● "ta0": This is a dummy procedure for special use (see the following explanation).

Similar to COMPCENTER1 the WPS of this workload defines a very simple construction
of its task types as follows. Activity type x is only used by task type x (x = 1, 2, ..., 5). All
these task types use the task mode with the value M = 1. This construction tempts the reader
to guess that generally these task types are interactive jobs. But this is not so. There is an
additional task type 6 which has an empty activity type. The task mode has the value is
M=0. The task types 4 and 5 are always followed by task type 6 (see the chain definitions
of the WPS). This results in "ta4" and "ta5" always going into the background. I.e. they
are executed as a traditional batch job. (For additional explanations see Section 2.3 and
compare to Section 11.5.1.1 and to Appendix A, Section 2.6 in file
 CD/Supplement-to ISO14756.pdf). This is the situation when the workload
COMPCENTER2 is operated in its usual version called "Version M". Please do not
confuse this name "Version M" with the task mode variable M.

The workload COMPCENTER2 has two additional versions, "Version I" and "Version B".
"Version I" activates only the task types 1, 2 and 3. This is achieved by setting the relative
chain frequencies q(1,4) and q(1,5) to zero. With "Version I" all tasks submitted to
the SUT use the task mode with the value M = 1. This causes all tasks to operate identically
to the traditional mode "interactive". Contrary to "Version I" the "Version B" activates
only the task types 4 and 5. This is achieved by setting the relative chain frequencies

 134

q(1,1), q(1,2) and q(1,3) to zero. With "version B" all tasks submitted to the SUT
are put into the background. This causes all tasks to operate identically to the traditional
mode "batch".

Studying these details will provide a better understanding of the workload and its OSCPs.

11.5.2.2 The logical steps of the OSCPs of COMPCENTER2

All logical steps of the 6 OSCPs are defined by its original text in Appendix F of ISO/IEC
14756, written in UNIX command language. They have to be migrated to the new
operating system following exactly the migration rule 5 of Section 11.4 . For providing a
better understanding the steps they are shortly described in the Appendix A of this book,
see Section 2 in file
 CD/Supplement-to-ISO14756.pdf .

For additional information concerning the preparation procedures and the installation of
the workload COMPCENTER2 see ISO original text in directory
 CD/iso14756-orig-workloads/ .

11.5.2.3 Some explanations

11.5.2.3.1 Preparation times (think times) and task modes of the 6 task types

To facilitate using the RTE and to simplify the workload the preparation times are also
simplified handled analogously to the workload COMPCENTER1 (see Section 11.5.1.3.1).

11.5.2.3.2 Execution times (response times) of the 6 task types

Analogously to the preparation times, the execution times are simplified as in workload
COMPCENTER1 (see Section 11.5.1.3.2).

11.5.2.3.3 The function "<process#>"

This is the same procedure as in workload COMPCENTER1 (see Section 11.5.1.3.3).

11.5.2.3.4 Submission of the value of REP to the SUT

The replication factor "REP" (in the ISO UNIX version of the workload COMPCENTER1)
is transferred from the RTE to the SUT by a UNIX environment variable. The idea is the
same as in workload COMPCENTER1 (see Section 11.5.1.3.4). The implementation of
this function is somewhat dependent on the realisation of the RTE. If migrating the
workload to a new operating system this solution might not work and a new solution has to
be developed. It is important that this solution does not change the CPU loading of the
SUT compared with the generic ISO workload version.

 135

11.5.2.3.5 Size of the tasks of COMPCENTER2

The same idea is used as in the workload COMPCENTER1 (see Section 11.5.1.3.5).

11.5.3 Workload COMPCENTER3

11.5.3.1 Introduction

The workload COMPCENTER3 was originally written for the operating system UNIX-
SVR4 and is summarised in Section 11.3.4 . The main changes to be performed, when
migrating to an other operating system, refer to a few OSCPs needed for preparing the
workload on the SUT. The activity types do not use any command procedures. Therefore
no changes are necessary. The application programs remain unchanged.

The application software of this workload is available in two languages, COBOL-ANS85
and ANSI-C. There are only two activity types: activity type 1 (read data from the data
base) and activity type 2 (write data into the data base).

11.5.3.2 The logical steps of the OSCPs of COMPCENTER3

There are only two pairs of very simple OSCPs. One pair is for installing the COBOL
version of the application software and the other one is for the C version. These procedures
have to be rewritten for migration of the workload to other operating systems.

The COBOL related OSCPs
The procedure "compile.gencob" generates the object code "generate" from the
COBOL source file "generate.cob". This is the data generation program. The
procedure "compile.taxcob" generates the object code "dialog" from the COBOL
source file "dialog.cob". This is the application program. The compiler options may be
chosen freely.

The C related OSCPs
The procedure "compile.genc" generates the object code "generate" from the C
source file "generate.c". This is the data generation program. The procedure
"compile.taxc" generates the object code "dialog" from the C source file
"dialog.c" . This is the application program. The compiler options may be chosen
freely.

11.5.3.3 Installation of the workload COMPCENTER3 on the SUT

The installation steps are described in sufficient detail in the file CC3/Prep/readme of the
original ISO workload description.

11.5.4 Migration examples of ISO workloads

ISO workloads were migrated to various UNIX and non-UNIX operating systems. These
versions are typically owned by the companies which performed the migrations and are not

 136

available. Some versions are available, see Appendix A of this book, directories
 CD/Linux-workloads/
 and CD/NT-workloads / .

For some drafts (incomplete sketches) see Solutions of Exercise 4 in Section 11.6. These
may be helpful in performing an actual migration.

11.6 Exercises

Exercise 1: Implementation of an ISO workload on a UNIX system

Part 1
Migrate one or more (but at least the second) of the ISO workloads COMPCENTER1,
COMPCENTER2, COMPCENTER3 to a UNIX operating system available to you. For
migration rules see Sections 11.4 and 11.5 .

Part 2: test the migrated workloads.

Exercise 2: Measurement

Perform a measurement series using the migrated workload COMPCENTER2-M of
Exercise 1. Use the measurement system DEMO. Determine the performance value Nmax of
your SUT.

Exercise 3: Migration to a midrange system

Part 1
Become familiar with the operating command language of a non-UNIX operating system
of a midrange computer. Migrate the ISO workload COMPCENTER2 to this operating
system. For migration rules see Sections 11.4 and 11.5 .

Part 2 : test the migrated workload.

Exercise 4: Migration of an ISO workload to a traditional mainframe system

Part 1: become familiar with the operating command language of a mainframe operating
system. Migrate one or more of the ISO workloads COMPCENTER1, COMPCENTER2,
COMPCENTER3 to this operating system. For migration rules see Sections 11.4 and 11.5 .

Part 2
Test the migrated workloads.

Solutions
For solutions see file
 CD/Solutions/Solutions-Section11-6.pdf .

 137

12 Creating an individual ISO-type workload

Annex F of ISO/IEC 14756 consists of example workloads that can be used as standard
workloads. There may, however, be situations where the user entirety is not or not
sufficiently be represented by one of these reference workloads. Therefore an individual
workload has to be defined.

It is assumed that before this Chapter 12 is read, the ISO user data model has been
thoroughly understood by studying in particular Chapter 2 and Section 11.1.

12.1 Activity types and their representatives

Defining an individual ISO-type workload starts with listing all users of the regarded user
entirety. A user can be a person (a human user) or a machine (data processing system). As
the user entirety typically changes depending on the type and time of day, the time period
has to be specified. For instance, this could be the peak traffic rush hour of the January
weekday mornings from 11.00 to 12.00.

For this period each user has to be analysed for the activities submitted to the SUT. (Please
remember Section 2.3; an activity is an order submitted to the SUT by a user for the
execution of a defined data processing operation.) Perhaps this produces a large number of
activities. The next step is to reduce this list considerably.

The various activities have to be classified into types. It is strongly recommended that as
few as possible activity types are defined. In many cases 3 to 10 activity types are
sufficient. Even with a large number of very different users you should not have more than
30 or 40 activity types. Experience has shown that more than 100 activity types are a
disadvantage for the purpose of performance measurement and rating. For each of the
activity classes a typical representative has to be chosen. These representatives are the
basis for defining the workload. The number of representatives is the number w of activity
types in the WPS (see Section 2.6). This is the basic parameter (3) in part 1 of the file
wln/C1_WPS/wps (see Section 11.1 and Fig. 11-1). For each of the w activity types
there is a column of 5 entries in part 2 of the file. The fifth entry indicates whether the
activity type has input variation. If there is input variation, the rule of it also has to be
specified (see Section 2.7.1).

12.2 Timeliness functions

The next step of defining an ISO-type workload is to specify the timeliness functions. For
each of the users, and for each of the activity types used by him, a timeliness function (see
Section 2.5) has to be defined. Note that a user may use all activity types. Perhaps the
analysis would produce a large number of timeliness functions. But this number can be
substantially reduced by identifying and selecting typical timeliness functions. Usually
only a few are needed. For instance: "fast response", "medium response", "slow response",
"background job response", "priority job response". The execution time requirements of
most users are described sufficiently by using these typical timeliness functions. It is
recommended that 2 or 3 time classes, but not only one and not more than 4, are used (see
Section 2.5).

 138

The chosen number of timeliness functions yields the value of p. It is the basic parameter
(4) in part 1 of file wln/C1_WPS/wps (see Section 11.1 and Fig. 11-1). From the
investigation also result the p activity type definitions in part 4 of this file, which contains
one column of entries for each timeliness function. Each column consists of the current
number of the timeliness function, the number z and 2*z values where z is the number of
time classes of the timeliness function (see Section 2.7.3).

12.3 Task types

The next step in defining a workload is to determine the task types. For each user the
following has to be defined: For each pair of activity type and timeliness function the value
of the task mode M has to be determined. Note that not all pairs may be used by the user.
Only for used pairs M has to be defined. For M see Section 2.3. It specifies whether the
user starts his preparation time (which precedes the task submission) immediately after the
submission of the previous task (M=0), or if he starts his preparation time when the
previous task has been completed (M=1). For a discussion about task submission and task
completion see Section 3.4 .

For a comparison of M=0 or M=1 with batch or interactive jobs see Sections 2.3 and
11.5.1.1. See also Section 11.5.2.1 for the device of the of the dummy activity type 6.

Each of the triples "activity type, timeliness function, task mode" represents a task type
(see Section 2.3). Perhaps this analysis would produce a large unmanageable number of
task types. But this number can be substantially reduced by identifying and selecting
typical task types.

It is strongly recommended that as few as possible task types are defined. In many cases 3
to 10 activity types are sufficient. Even with a large number of very different users you
should not have more than 30 or 40 task types. Experience has shown that more than 100
task types are a disadvantage for performance measurement and rating.

The chosen number of task types yields the value of m. It is the basic parameter (5) in part
1 of file wln/C1_WPS/wps (see Section 11.1 and Fig. 11-1). From the investigation also
result the m task type definitions in part 3 of this file, which contains one column of entries
for each timeliness function. Each column consists of the 4 entries task type number,
activity type, task mode and timeliness function.

12.4 Chain types

So far the analysis has reduced the real user entirety to an abstract user entirety which uses
only the defined m task types. The ISO workload model assumes that the users typically
submit sequences of tasks (see Section 2.4). Such sequences are task chains. Therefore we
have to analyse all users as defined in the reduced user entirety, with respect to the
sequences they submit. This again seems to produce a large number of different sequences.
But this number can be reduced by identifying and selecting typical chains. Select only the
most important ones. Usually a moderate number is sufficient. As a rule do not define
more than 10 chain types to be used by a user. This rule follows from the necessity of
having not too small chain probabilities (see Section 12.5). Elsewhere the rating interval,

 139

i.e. the duration of the measurement, would be very long. This analysis yields the value of
u, the total number of chain types.

u is the basic parameter (6) in part 1 of file wln/C1_WPS/wps (see Section 11.1 and Fig.
11-1). From the analysis also result the u chain type definitions in part 5 of this file, which
contains one column of entries for each chain type. Each column consists of the 3 entries
chain type number, length of the chain (number of tasks) and the task type sequence itself.

12.5 Chain probabilities and user types

Each user has to be considered with respect to his relative frequencies (q values) of using
chain types. This yields an initial column of u entries for each user. Each of the u entries is
a value between zero and 1 and the sum of all values has to be 1. Comparing all these
columns will show that many of them are similar or nearly identical. That means that, with
respect to the q values, there are subgroups of the user entirety. The members of a
subgroup use each chain type with (nearly) the same relative frequency. The subgroups are
called user types (see Section 2.6). This analysis yields the total number of user types
called n. Its value is the basic parameter (1) of part 1 of the file wln/C1_WPS/wps (see
Section 11.1 and Fig. 11-1). The investigation yields also the total number of users of each
type which are the n values of the basic parameter group (2).

Based on the similar q value columns (of all users of one type) a common column, valid
for all users of the type, has to be defined. It is strongly recommended, for getting not too
long rating intervals, to chose for the relative frequencies values which are not too small.
Generally, values should be multiples of 0.05 .

The relative chain frequencies of the n user types found, appear in the n columns of part 6
of the file wln/C1_WPS/wps . Each column has u entries. The sum of the values of each
column has to equal 1. This is the chain probability matrix ("p-matrix").

The reason why the q values should not be too small is made clear by the following
examples. Let the number of chain types be u=3 .

 Example 1: Let the q values of a defined user type be 0.04, 0.93 and 0.03 . The greatest
 common divisor of these three values defines the minimum number of chains in the RI
 for having a chance of realising exactly the desired relative chain frequencies. The
 greatest common divisor is 0.01 . Therefore
 1.0/0.01 = 100 chains (or a multiple thereof)
 must be included in the RI. The desired relative frequencies are realised if having 4, 93
 and 3 chains of the types 1, 2 and 3 in the RI.

 Example 2: Let the q values of the defined user type be 0.40, 0.20 and 0.60 . The greatest
 common divisor is 0.20 . Then at least
 1.0/0.20 = 5 chains (or a multiple thereof)
 must be included in the RI.

It is obvious that the second example, which has larger q values, yields a much shorter RI.

 140

12.6 Preparation times ("think-times")

Each submission of a task is preceded by the user's preparation time (i.e. think time) as
explained in Section 2.7.6 . Depending on both the user type and task type, the mean value
of the preparation time has to be determined from the user entirety. This produces a list of
m values for each user type. The list is represented as a column in the WPS. For n user
types are there n columns. This is the preparation time mean values matrix (h-matrix) of
part 7 of the file wln/C1_WPS/wps (see Section 11.1 and Fig. 11-1).

In addition to the mean values of the preparation times the standard deviation values have
to be specified (as explained in Section 2.7.7). A standard deviation value has to be defined
corresponding to each element of the preparation time matrix. This produces the n columns
of m values of part 8 of the file wln/C1_WPS/wps which is the preparation time
standard deviation matrix (s-matrix).

The standard deviation is an indicator of how much the randomly created preparation times
differ from the mean value. A standard deviation value of zero means that all preparation
times are equal to the mean value. The s values may not be too large in relation to their
corresponding h-values (see Section 2.7.7). As a rule an s value should not be greater than
50% of its corresponding h-value. When using the Urn Method the limit is a little larger
(as shown in Sect. 6.3.3).

12.7 The WPS

12.7.1 Recording the values of the WPS in a text file

The values of the WPS have to be recorded in ISO format in a text file named wps . These
values are determined according to Sections 12.1 to 12.6 above, and summarised as
follows.

Section 12.1 produces
 ● the value of w, basic parameter (3) in part 1 of the wps file
 ● the activity type definitions in part 2 of the wps file.

Section 12.2 produces
 ● the value of p, basic parameter (4) in part 1
 ● the timeliness functions in part 4.

Section 12.3 produces
 ● the value m, basic parameter (5) in part 1
 ● task type definitions in part 3.

Section 12.4. produces
 ● the value of u, basic parameter (6) in part 1
 ● chain type definitions in part 5.

Section 12.5 produces
 ● the value n, basic parameter (1) in part 1
 ● the user number of each type, the n values of basic parameter group (2) in part 1
 ● chain probabilities in part 6 (q-matrix).

 141

Section 12.6 produces
 ● preparation time mean values in part 7 (h-matrix)
 ● preparation time standard deviations in part 8 (s-matrix).

An example of a WPS can be found in Fig. 11-1 .

12.7.2 Recursive improvement of the WPS

After defining this first version of the WPS at least a further attempt is recommended in
order to simplify it. The goal is to reduce the values of
 n (number of different user types),
 w (number of different activity types),
 p (number of different timeliness functions),
 u (number of different chain types)
while preserving the essentials of the real user entity.

Another goal is to reduce the measurement duration. This depends among other things on
the preparation times. Long preparation times result in long measurement durations. (And,
naturally, the execution times of the SUT influence the measurement duration; but these
times are the subject of the measurement and not of the WPS specification.) If there is a
very large h value, then check if it would be possible to replace the corresponding task
type by a number of shorter running tasks and reduce accordingly the corresponding mean
preparation time. Then a greater number of execution time samples per hour are produced
and there is a better chance of fulfilling the ISO criteria of statistical significance of the
measurement within a shorter measurement duration.

The number of tasks per hour of a task type does not only depend from the preparation
times and the execution times. If there are small values in the q-matrix, a long time is
needed for obtaining a suitable number of tasks of the related task types. Therefore check
the q-matrix for small values less than 0.05 (see Section 12.5). If there are any, see if the
corresponding chain types can be replaced in order to obtain a larger q-value.

As also mentioned in Section 12.5 another rule is that the values of the q-matrix should be
a multiple of 0.05. It would be even better if the q-matrix values were a multiple of at least
0.1 . If possible make this adjustment to the q-matrix.

This improves the chance for achieving "OK" with respect to the DELTAq criterion (see
Section 4.2.2) with a shorter measurement duration especially when using the Urn Method
(see Chapter 6).

For a roughly estimate of the magnitude of the measurement duration the following
procedure can be used: Insert the WPS in your ISO RTE (for instance DEMO) and let it
compute the throughput vector of the ISO reference machine (see Sections 7.2 and 7.3.2)

 BRef = (BRef(1), BRef(2), ..., BRef(m)) .

Search for the smallest of these m values. For instance the value could be

 BRef(3)= 0.004 tasks/sec .

 142

This means that the most infrequent task type is submitted about 15 times per hour.
Usually about a dozen samples are needed for getting an acceptable statistical significance.
Assume that the SUT is fast enough for fulfilling the timeliness requirements of the
workload. Then the measured throughput approximate the magnitude of the reference
throughput. The dozen samples of the most infrequent task type needed will be produced in
less than an hour (RI). This would be an acceptable measurement duration. But, on the
other hand, if the smallest reference throughput value is 0.0004 tasks/sec then the
measurement duration could be 9 to 10 hours (RI) which might be too long. Then check if
the WPS can be redesigned.

12.8 The application software

The application SW and the related data have to be documented in the workload directories
 wln/C2_AppPrgr/
 wln/C3_OSCP/
 wln/C4_RES/
 wln/C5_SData/ .

Follow the explanations of Sections 2.8 and 11.1 and use the workloads described in
Sections 11.2 and 11.3 as examples.

12.9 The advanced parameters

These parameters check the sufficiently precise working of the RTE and the statistical
significance of the measured results. The values have to be stored in the directory
 wln/C6_SPAP .

For the format see the examples of the Sections 11.2 and 11.3. For the values follow the
explanations and recommendations in Section 2.9 .

12.10 Preparation

The content of the directory wln/Prep/ can be designed individually according to the
requirements of the workload (see Section 11.1). For examples see Sections 11.2 and 11.3 .

12.11 Migration of an individual ISO-type workload to a
 different operating system

An individual ISO-type workload is typically developed for and implemented on an
operating system of primary interest to its designer. However, interest often arises for
migrating this workload to a different operating system. For such an action the same rules
are valid as explained with respect to the ISO workloads in Section 11.4. There is no
difference between individual ISO type workloads and the workloads published in
ISO/IEC 14756. Before migrating it is essential to analyse thoroughly the operating system
command procedures. For examples see Sections 11.5.1, 11.5.2 and 11.5.3 and Annex A,
see file
 CD/Supplement-to-ISO14756.pdf .

 143

12.12 Exercises

Exercise 1: Specifying a scenario and defining the according
 ISO-type workload

Suppose a LINUX computer is used with a simple application of your own choice. Sketch
roughly in your own words the user entirety: scenario. Create the ISO type workload and
check it so far as possible for correctness.

Exercise 2: Measurement

Perform an ISO-type measurement series using the workload created in Exercise 1.

Exercise 3: Migration

Part 1
Migrate the workload created in Exercise 1 to another multi-user operating system (for
instance to WINDOWS-XP, a proprietary UNIX system or a mainframe system). For
migration rules see Section 12.11.

Part 2
Perform an ISO-type measurement using the migrated workload. For a SUT use a suitable
IP system having the operating system specified in Part 1 .

Solutions
For solutions see file
 CD/Solutions/Solutions-Section12-12.pdf .

 144

 145

13 Organisation and management of an ISO-type
 measurement project

For a performance measurement project all general rules of a project organisation and
project management are valid. In this chapter some recommendations are made with
special reference to the ISO method.

13.1 Deciding on the goals of the measurement project

Two decisions have to be made. The first decision is of whether the project deals with
performance measurement or with software run time efficiency measurement. The second
decision is the choice of the method to be used. Here it the choice is clear; measurement
according to ISO/IEC 14756.

The following sections 13.1.1 and 13.1.2 describe points that have to be clarified in stating
the goals of the project. They have to be recorded either on paper or electronically.

13.1.1 List of performance measurement goals

0. Attribute to be measured: Data processing performance

1. Method to be used: As defined in ISO/IEC 14756

 Note: These two entries seem to be obvious, but they are not so for a reader not involved
 in the project. ■

2. Description of the SUT:
This is a short description of hardware, operating system, additional system software,
network etc. A detailed description has to be given in an appendix of the project paper. In
many cases several SUTs have to be measured for a performance comparison. They must
all be summarised here and specified in detail in the appendix.

3. Choice of the workload:
One of the ISO workloads or an existing individual ISO-type workload can be suitable. If
none of them is suitable for the user entirety under consideration, a new ISO-type
workload has to be specified (see Chapter 12). Then the creation of the workload is an
essential part of the project. Or it might be that a non ISO-type workload is intended to be
used. It has to be clarified whether the attributes of this workload are sufficiently similar to
the ISO method. If so a conversion can be made (see Section 14.8). The conversion is then
an essential part of the project.

4. Single measurement or series
Decide of whether a single measurement or a measurement series (see Section 8.1) shall be
performed. For a measurement series, the way of modifying the SUT has to be defined.
Usually the number of users has to be varied incrementally (see Section 8.3).

5. Categories of values required for the results
Decide which results are required. They can be, can be for instance

 146

 ● performance values (i.e. the vector triple of P)
 or it can be
 ● the rating values (i.e. the vector triple RTH, RME, RTI)
 or it can be
 ● the Nmax value.
 But also it can be
 ● a specified conclusion derived from the measured values
 for instance the cost per timely served user.

13.1.2 List of software run-time efficiency measurement goals

0. Attribute to be measured: Software run time efficiency

1. Method to be used: As defined in ISO/IEC 14756

 Note: These two entries seem to be obvious, but they are not so for a reader not involved
 in the project. ■

2. The reference environment:
Define the reference environment. It contains the following components
(compare Section 10.2 and Figures 10-2, 10-7):
 ● the WPS
 ● the software of the levels between the user entirety and the measurement level
 ● the reference software of the measurement level
 ● the software of the levels between the measurement level and the hardware
 ● all the hardware

Then define all data necessary for a ISO-type workload description.

It is important that the speed of the SUT hardware is sufficient to ensure that none of the
rating values (L-values) is less than 1, i.e. the reference environment must satisfy all user
requirements (see tips concerning this in the examples of Section 10.4). Slower hardware
would not make sense.

It is recommended that the reference environment is summarised here. A complete detailed
description has to be given in a appendix of the project paper.

3. Specification of the SW to be measured:
The SW to be measured has to be specified in detail (name, manufacturer, release, build
etc.). It has to be provided either as source or executable. For compilation the compiler
options shall also be specified. The software has to be tested for full real operation.

4. Categories of values required for the results:
Decide which results are required. They can be, can be for instance
 ● the triple of the I vectors (see Section 10.3.2)
 or it can be
 ● the Imaxuser value (see Section 10.3.3).
 But also it can be
 ● a specified conclusion from the measured efficiency values, for instance the
 number of additional timely served users when installing the measured software
 or it can be the cost of the software per timely served user.

 147

13.2 Defining the responsibilities

The persons responsible for all parts and phases of an ISO-type measurement have to be
defined. The division into parts naturally depends on the project and the personnel
planning it.

Examples of detailed responsibility are:

 ● General planning of the project
 ● Setting up the project schedule
 ● Detailed definition of the workload (in case of performance measurement)
 or
 detailed definition of the reference environment (in case of
 software efficiency measurement
 ● Providing the components to be measured (SUT or software)
 ● Providing the test bed (room, computers, reference software, ISO-type RTE, etc.)
 ● Performing the measurement
 ● Computing the performance values; checking correctness;
 computing and documenting the measure report and the final result;
 checking the accuracy of all results
 ● Controlling the costs and expenditure of the project
 ● Performing an audit (if so planned)

13.3 Assessing the costs of the project

Normally an ISO-type measurement project is not a matter of trivial costs and technical
expenditure. It cannot be performed by one person in one hour. Therefore when planning
the project it is necessary to estimate the resources, both technical and personnel, and other
costs.

Likewise, it is necessary to define the planned quality of the results (for instance, a first
rough assessment or thorough and detailed assessment) and related aspects to be aimed at.
The quality of results includes the values of the statistic criteria as in directory
 wln/C6-SPAP/
(see Section 11.1). In case of a measurement series, the quality of the result and the
accuracy of Nmax depend on the step width of the number of users in the series. The best
possible precision of Nmax is +1 . Where there is more than one user type Nmax is +x
where x > 1 (compare Section 8.2). If, for instance, Nmax is about 1000 it can be
sufficient to determine Nmax with a precision of +50 .

In addition, contingency planning is desirable for dealing with possible unexpected results.
Suppose that the planned duration of the RI is one hour, then it could happen that the SUT
is not enough stable and needs 10 hours. In this case a reduced measurement precision will
result. For such a situation provisions have to be made as for instance by making a decision
as follows: the RI should not be longer than 2 hours; if the RI would be longer then the
reduced precision of the measurement result (when keeping the RI less than 2 hours) will
be accepted.

A balancing of quality of results, technical expenditure, manpower and costs when
planning the measurement project is strongly recommended.

 148

13.4 The project schedule

When planning a project the setting up of a schedule is mandatory in all cases. In such a
schedule it can be seen whether the planned results will be available at the expected time.

13.5 Making the workload available

For an ISO-type measurement the workload consists of a set of data and programs (see
Chapter 2 and Section 11.1). This set of information has to be brought into the state of
being operational for the actual SUT and RTE under consideration. Then it can be
installed. It is a regrettable fact that often the RTE is not able to read the ISO format of the
WPS. In these cases the WPS has to be converted to the RTE format.

If one of the workloads in Annex F of ISO/IEC 14756 is being used, it has to be checked
for being operational on the SUT. If the operating system is not a UNIX-SVR4 operating
system the workload has to be converted for testing and running on the other system (see
Section 11.4).

When using an individual ISO-type workload developed by someone else, this workload
also has to be checked to determine whether migration to the actual SUT is necessary (i.e.
operating system, compilers, data base system; see also Section 12.11). An additional
aspect is the ownership of the workload. If the new user is not the owner then licensing
aspects may need to be clarified.

An additional and important issue is the question of security and confidentiality of the
stored data, i.e. flat files and/or data base content, if it is part of the workload. The data
may be real production data restricted to its original computer centre. These data have to be
made anonymous first, necessitating considerable additional work.

Whenever a suitable workload is not available a new workload has to be developed (see
Chapter 12). In this case the phase of providing the workload will be part of the
measurement project for which sufficient time, resources and costs must be planned.

It is strongly recommended that for clearness and readability the workload and especially
the WPS are written in the ISO format (see Section 11.1 and the ISO workloads in Annex
F of ISO/IEC 14756, see directory CD/iso14756-orig-workloads/).

13.6 Making the SUT operational and tuning it

A precondition for performing a measurement is the full operative functionality of the
SUT. Therefore the SUT and all programs and data of the workload have to be completely
installed and tested. For software efficiency measurement, both the software to be
measured and the reference software have to be installed and made fully operational. These
actions have to be performed first manually for one real user and then for a small number
of real users. For advanced testing with many users the RTE can be used for user
emulation. The amount of manpower of this phase should not be underestimated. It can be
as much as needed when installing and testing for normal live operation.

To obtain, in case of performance measurement, optimum results from a SUT it should be
tuned. This tuning is restricted to the adjustable parameters of the operating system, system

 149

software (as for instance the data base management system) and the networking. Neither
the programs nor the data of the workload may be altered or tuned.

For software efficiency measurement, the software to be measured can be tuned, but the
reference software may not be altered or tuned.

13.7 Choosing an ISO-type RTE having sufficient performance

The RTE has to realise fully and correctly all ISO features and functions defined in
ISO/IEC 14756. This concerns not only the task generation and submission, but also the
recording of the data in an ISO-type logfile, and the checking of the accuracy of the
measurement and of the calculation of the performance and rating values. Be careful when
the supplier of an RTE states "ISO-type RTE"; he may have bent the truth. The RTE
should be certified to ISO/IEC 14756 by an authorised expert.

The necessary hardware speed of the RTE depends, on the one hand, on the type of the
workload and, on the other hand, on the power of the SUT. If for instance the workload has
long preparation times and CPU intensive tasks types an RTE of moderate hardware power
can be sufficient. But if the workload has task types that are not very CPU intensive (as for
instance OLTP systems) and there are many emulated users, the RTE may need a hardware
that is more powerful than that of the SUT.

13.8 Performing the measurement

Let us assume that all the preparatory work, as described above, has been completed
successfully. Both when performing a performance measurement (single run or a
measurement series) and when performing a software efficiency measurement (single run
or series), each run follows the list of steps as in Fig. 9-2 in Section 9.1 . The duration of a
run is longer than the RI because of the stabilisation phase and the supplementary run.
Typically, additional time is needed for restoring the so-called stored data of the workload
to its original state for the next run. And usually there is a large amount of work for
checking the correct operation of the SUT. A well designed run needs from a minimum of
a quarter of an hour to several hours, depending on the SUT and the workload.

Total needed time results from the planned runs, but often additional test runs are
necessary which must taken into account.

When performing a measurement series the following tips may be helpful:

 ● Always start the series with only one user, or the minimum number if there are several
 user types (see Section 8.2). This will give you basic information about the behaviour
 of the SUT.
 ● Then gradually increment the number of users. Check the L-values (rating) and the
 CPU loading and of the SUT. Also always check the CPU loading of the RTE to
 ensure that it is not overloaded.
 ● Derive from the current measurement a value of the total number of users for the next
 run and try to interpolate Nmax .
 ● Continue proceeding in this way. When approaching Nmax try a value slightly less than
 this value.

 150

 ● Use small steps in incrementing the number of users when the L-values
 approach the limit of 1.
 ● Take note that a run with too many emulated users can cause a serious system crash of
 the SUT. The system and stored data may become corrupted. Repairing this damage
 can lead to using a vaste amount of time and manpower. Make precautions for this
 situation.

Each measurement run must be documented (see Sections 9.3.2 and 9.4.1).

13.9 Computation of the performance values and rating values

The computation of these values from the recorded logfile is typically performed by
programs which are part of the RTE. The computation is typically done within a few
minutes. Therefore it is a matter of course that those results are provided by the RTE at the
end of each measurement run. No extra action is needed. Typically the results of all runs
are displayed on a screen and stored by the RTE.

13.10 Audit

As ISO/IEC 14756 is a technical standard there are no regulations concerning an audit. It is
a common discretionary decision of the partners of a measurement project whether an audit
shall be realised or not. If for instance the measurement results are only needed for internal
company use an audit will not be needed. But if the measurement results are planned to be
published or used for evaluating tenders, a audit may be advantageous or even necessary.
In this case all parties must agree to the content.

 151

14 Miscellaneous aspects

14.1 Measurement using a real workload

It would be no problem at all to record all tasks submitted by a real user entirety to a data
processing system and to set time stamps for all relevant events such as the start of think time
(preparation time), time of submitting tasks and time of completion of each task. But a
problem would arise of how to classify the jobs into task types. For solving this problem it
would be necessary to record an extended logfile containing much additional information
about each job. This file would then have to be analysed for determining the task types. Then
each job would have be assigned to one of the found task types. After the analysis of the
logfile in this manner (and additional work) the values of the m-tuples B and TME can be
computed. For computing the m-tuple E assumptions would be needed about the response time
requirements (i.e. execution time requirements) of each user with respect to each task type.
Using these assumptions it would be possible to compute the values of E . But the quality of
these values would be no better than "estimated" instead of than "actually measured".

These assumptions define a WPS and the reference performance PRef can be computed from
it. But the quality of these values would also be no better than "estimated" instead of "really
measured". From the determined values P and PRef the rating vector triple could be computed.
Again: The character of these values is only "estimated".

An additional problem is that a real workload is not really reproducible for performing
additional measurements with the same or another SUT. Naturally the recorded logfile could
be used as a new input for repeating the session. But how could the number of users be varied
(for instance for realising a measurement series) ? Many more problems arise. Among these:
the reference performance PRef for rating is only a rough estimate.

Because of all these problems it was decided to not include the use of real workloads in
ISO/IEC 14756.

14.2 Measurement using automated sample users

A method often used for answering the following question is the use of sample users. The
question is whether the response times of a multi-user system or a computer network fulfil the
user requirements. A sample user can be realised by a user simulator (RTE) which emulates
only one user ("automated sample user"). It is logged onto the system, which is running in real
operation, in addition to the real users. The number of sample users need not be restricted to
one, but typically it is small. For instance the number can be about 1 per mill or 1 per cent of
the total number of active users. Naturally it is possible to use RTEs which operate according
to the ISO method (see Fig. 14-1). The logfiles recorded by these RTEs can be analysed
according to the ISO method. The ISO type performance values and rating values can be
computed. But all these values and the conclusions derived from them are only valid to the
extent that the workload defined for the sample user matches that of the real users. This
assumption is very poor and unreliable.

 152

Fig. 14-1 Sample users

Using automated sample users may be a method for the rough monitoring of response times
(execution times). But they are not suitable for determining reliably the ISO-type performance
or the rating values of the IP system.

14.3 Measuring single-user systems

Though the ISO method was designed for measuring multi-user systems it can be applied also
to single-user systems. The only one restriction is that the total number of users of the
workload equals 1.

As there is only one user the derived performance measure Nmax (see Chapter 8) cannot be
used. Obviously the total number of users is fixed to 1. But measurement series which
stepwise modify another parameter of the workload can be performed. For instance the ISO
workloads COMPCENTER1 and COMPCENTER2 can be used by setting Nuser(1) = 1 and
varying another parameter, for instance the REP value. Hereof a new derived performance
value can be determined, e.g. REPmax .

General
IP System

user

useruser user

user

user

user

user

RTE WPS

Logfile

RTE WPS

Logfile

User Interface

Server
Set of single user
RTEs (ISO-Type)

 153

REPmax is the maximum REP value for which the 3*m R values are not less than 1. It is the
maximum replication factor of the tasks for which the SUT fulfils the response time
requirements of its single user.

Please note that the ISO workload COMPCENTER3 could not be used because the are more
than 1 user types and Ntot = 1 impossible.

14.4 Hidden batch jobs in online transaction processing

When OLTP systems or OLTP computer networks are being measured a strange phenomenon
often appears. With a small number of emulated users the execution times are typically short.
With more users the mean execution times increase as expected and also the standard
deviations increase. Increasing again the number of users increase the mean execution times.
But the standard deviations increase unexpected strongly. Analysing the execution time
distributions reveals a small number of tasks with execution times as much as 100 times the
mean execution time. The task type which seems to be blocked changes randomly, a
phenomenon that is not easily explained. No rule can be found.

A thorough investigation showed that there are some transaction task types that caused heavy
CPU loading. For feigning short execution times these transactions are treated as completed
and the keyboard (plus screen) is switched free for the next transaction. This is not explained
in the user manual. But such a task (called "hidden batch job") is not completed at this time. It
is changed to batch mode and placed to the background, hoping that some time later the CPU
load will decrease sufficiently for completing the task. With a large number of active users this
would probably not work. The hidden batch jobs would not be completed for a very long time
and their computational results would be delayed. Tasks depending on these results would be
blocked.

This problem was solved as follows. We recognised that these problematic transaction types
have both external and internal task results (for "internal/external task result" see Section 3.4).
Such a task is not completed at the appearance of the external result at the terminal (the screen
message "ready" or similar) but at the arrival of the internal result, i.e. the completion of the
hidden batch task. The moment of completion of those tasks is the appearance of the internal
task result, i.e. the completion of the hidden batch job. Applying this definition of task
completion to the problematic task types the SUT can no longer feign the too long execution
times.

Correcting the problematic task type definitions in the WPS achieves that correct execution
times are recorded and measured by an ISO-type measurement system. For these task types a
new timeliness function has to be defined with a rather longer mean time. A good way of
doing this is as follows: Try to determine the longest blocking time acceptable by the users
and use this value as the time limit of the longest time class of the timeliness function. Do this
for all task types that have hidden batch jobs.

 154

14.5 A distributed RTE

Is it necessary to realise an ISO type RTE by use of only one computer ? The answer is "no".
All users of an ISO-type workload work independently of each other. Therefore each user can
be emulated by a separate computer. Any group of emulated users can share a computer. This
is a distributed RTE. Only one special condition is necessary for a distributed RTE. This is a
synchronisation mechanism for defining the common times t0 (start time), t1 (begin of the
rating interval), t2 (end of the rating interval) and t3 (end of the supplementary run). For
individual rating intervals the synchronisation mechanism has to be implemented according to
the rules of this method as described in Section 6.2.1 . At the end of the measurement, i.e. after
t3, all the logfiles have to be collected up and evaluated. This is the responsibility of the
computer that analyses them, performs the correctness tests and computes the performance
values and the rating values.

The advantage of a distributed RTE is the emulation of higher number of users than possible
with a single computer RTE. The disadvantage is that a synchronisation mechanism is
necessary.

14.6 Life cycle of ISO-type workloads

The following is a list of aspects that influence the life cycle of an ISO type workload. The
aspects are discussed below.

14.6.1 Workload definition and documentation

The data model, and the form and semantics of an ISO-type workload follow regulations
which are accessible to everybody and available for a long time as they are in an international
standard. Therefore the contents of a workload is on the one hand completely described and on
the other hand needs no further comments or operating instructions (see Section 11.1). The
workload file can be understood and used without additional explanations from the originator.
An ISO-type workload is long-lived. This is contrary to traditional and proprietary
benchmarks. Typically, only some parts or only the kernel of those benchmarks continue to be
available. Only certain persons have the special knowledge and the data for running the
benchmark. Again after some time those persons are no longer available and it would be
impossible to understand this non ISO benchmark in detail or to run it again.

14.6.2 The RTE

The principles of an ISO-type measurement system are documented in the ISO/IEC 14756 and
accessible to everybody. The RTE can be implemented on any multi-task multi-user operation
system having a suitable network operability. Therefore the implementation is not dependent
on the actual operating system available, the computer manufacturer, the hardware
architecture and other details of the platform to be used. If there is the problem of lack of
hardware speed, for instance for measuring a workload having a large number of users, a
distributed RTE (see Section 14.5) can be used.

 155

14.6.3 Type, architecture, manufacturer of the SUT

These properties do not influence an ISO-type workload, unless the workload was deliberately
made to run only one particular configuration. But this would be contrary to the general
intentions of the ISO/IEC 14756. Therefore an ISO-type workload can be used independently
of the SUT architecture. This means that an ISO-type workload can in principle be used for
measuring any existing IP system and also for new systems coming onto the market.

14.6.4 Power of the SUT

Most new computers and IP systems are more powerful than earlier machines. Consequently
the execution times become shorter. Broadly said, this means that more users can be served.
The usefulness of a workload is reduced when the SUTs becomes more powerful. A limit is
reached when the execution times are too short even when the RTE emulates his maximum
number of users. This number can be some thousands in case of a OLTP system workload, or
some hundreds when the users access the SUT with telnet protocols. To resolve the problem
parameters can be introduced to the activity types for adjusting the CPU load, the I/O loading
and so on. For an example consider the REP factor of ISO workloads COMPCENTER1,
COMPCENTER2 and COMPCENTER3 . When constructing a workload one of the goals
should be longevity. Plan to introduce a factor for adjusting the weighting of the activity types
without changing their general characteristics.

14.6.5 Applications contained in the workload

The applications have a strong influence on the life cycle of the workload. There are two
classes.

 ● The first class comprises the day to day workloads. They are planned for short term use
 (for instance for an ad hoc comparison of some IP systems offered by suppliers to a
 customer). There are no special restrictions on the applications chosen for the workload.
 ● The second class comprises the workloads that are planned from the start for a long term
 use. Do not use low level languages. High level languages are more suitable for
 applications intended to be long-lived. Additionally the applications should not depend
 on short-lived special features of the operating system and system SW.

14.6.6 Final remarks

There are many additional aspects which could be discussed. From the five issues above it can
be seen that the ISO method offers a good chance of making an ISO-type workload long-lived.
This is contrary to most of the traditional performance measurement methods whose
workloads short-lived. ISO-type workloads can, but must not, be long-lived.

 156

14.7 Reliability aspects

When measuring the performance of an IP system or its software (run time) efficiency it is
assumed that the system is in a stable operating state and has no reliability problems. With a
system crash during the measurement (i.e. at any moment between t0 and t3) no measurement
results become available. But what about the following situation? The system fails only for a
short time, and starts again without having a loss of data or fails for several short periods ?
Then the user entirety sees only some tasks having a long or a too long response time. An
analogous situation happens when some user interfaces break down for a short time. In all
these cases the measurement can run to a successful end. But the measured performance value
P = (B, TME, E) is worse than when the SUT runs quite normally. If the breakdowns last
short enough the users cannot see if there were faults or if there was only a temporary lack of
performance.

The important conclusion is: Short failures (but a not total breakdown) yield a reduction of the
measured performance values. It is not possible to distinct between the effect of those failures
and a real lack of performance. There is a grey area between normal operation and breakdown.
This is only valid if there was no loss of data, i.e. all computational results of the SUT were
correct. If not, then the measurement is not valid (see Section 4.1). Then the performance
values should not be computed from the logfile because they would be meaningless.

14.8 Conversion of non ISO-type workloads to the ISO data model

14.8.1 Candidates for conversion

A vast number of programs exist that are supposed to measure performance. Many of them are
not suitable for inclusion in a workload to be converted to the ISO data model. Programs are
not suitable that indicate primarily or exclusively internal performance values (for instance
CPU loading or storage usage). Also unsuitable are those programs that try only to determine
the values referring to the reliability or accuracy of the IP system under consideration.

But suitable could be programs that check the speed of operation (see "third class" as
described in Section 1.1). Many of those programs are only available as executable code
without any description of the principles of task generation. There is no definition of the
performance terms and no description of how they are calculated. These programs are not
suitable for conversion to an ISO-type workload. Suitable candidates are only those programs
where details such as task generation, the actual tasks, the performance terms and their
calculation are clearly and completely described. All features should be fully documented and
supported by source codes.

14.8.2 The conversion procedure

As the philosophies and methods of benchmarking vary widely a general and universally
applicable conversion procedure is not possible. The basic idea is to use the procedure for of
constructing an individual ISO-type workload (see Chapter 12).

 157

Begin by investigating the benchmark for the tasks are submitted to the SUT. Then analyse as
closely as possible which actions ISO-type users would perform when submitting the same job
stream to the SUT as in the benchmark. Then follow the recommendations for constructing an
individual ISO type workload (see Chapter 12). Usually the application software and data can
be taken as it is (see Section 12.8). But sometimes it may have to be modified. Typically the
benchmark does not offer suggestions for the timeliness functions so that they have to be
based on your knowledge and experience.

When the workload has been converted an ISO type measurement can be performed. The ISO-
type performance and rating values are determined. In nearly in all cases it would be pointless
to try to express these results in the original terms of the benchmark. A possible exception is a
benchmark that uses, in his original version, the number of timely served users or a related
term for a performance measure.

14.8.3 Examples of conversions and sketches of some individual workloads

The following examples are only intended to give rough guidance; they are not guaranteed for
either completeness of the conversion or accuracy.

14.8.3.1 The classic non-multiprogramming batch benchmark

Historically this is the oldest version of the batch benchmark. It was developed for SUTs
having a non-multiprogramming operating system. The benchmark has only one activity type,
the test program. Constructing an ISO-type workload yields a user entity consisting of just one
user. He submits this activity to the SUT and repeats the submission when the program is
completed. Therefore there is just one task type having the task mode 1. The timeliness
function can be stated as simple as possible, for instance with only one time class having a
suitable time class limit. For this limit we take the largest accepted run time of the test
program, for instance 1 minute. The user's think time (preparation time) before submitting a
task has no relevance. It can be set to an arbitrary value. For instance we can assume 1 second.
These data produce the content of the directory C1_WPS/ of the workload.

The contents of the directories C2_AppPrgr/ , C3_OSCP/ , C4_Res/ , C5_SData/ and
Prep/ result from the original benchmark description (for the names of the directories see
Section 11.1). The directory C6_SPAP/ should contain suitable values (as for instance used
in the workloads shown in Annex F of ISO/IEC 14756). These parts are omitted here by
reasons of shortness. They can be easily completed. This simple workload is shown in
Fig. 14-2.

Measurement is simple. The duration of the RI would seem to be sufficient if it were long
enough for the once only execution of the test program. But for reasons of being able to check
the statistical significance of the execution time (see Section 4.3) the RI should be so long that
it includes some more times the execution of the test program. The reason is as follows: most
execution times will be nearly the same, but sometimes they may be quite different.

 158

 A) File General
 (Short description and overview of the workload)
 B) File C1_WPS/wps (workload parameter set)

 1. Basic parameter values
 (1) Total number of different user types: n = 1 ;
 (2) Total amount of emulated users of each type: N_user(1) = 1
 (3) Total number of different activity types: w = 1 ;
 (4) Total number of different timeliness functions: p = 1 ;
 (5) Total number of different task types: m = 1 ;
 (6) Total number of different chain types: u = 1 ;

 2. Activity type definitions

(1)Activity type number:	1
 (2) The logical meaning | |
 of the input: | *) |
 (3) The length (number) | |
 of characters) of | |
 the input string: | 3 |
 (4) The input string | |
 itself: | run |
 (5) Activity type | |
 input variation: | none |

 *) Name of the shell script which has to be run.

 3.Task type definitions

(1) Current number j of the task type:	1
 (2) Number of the activity type: | 1 |
 (3) Value of the task mode M(j): : | 1 |
 (4) Type number of the timeliness function: | 1 |

 4.Definitions of the timeliness functions

(1) Order number of the timeliness function:	1
 (2) Number of time classes of this function: | z=1 |
 --|---------|
 (3) z couples of values g_t and r_t, where | |
 g_t is the time limit and r_t is the | |
 maximum accepted relative frequency: g_t(1):| 1.0 min |
 r_t(1):| 1.0 |
 --|---------|

 5.Definitions of chain types

(1) The current number l of the chain type:	1
 (2) The length L_chain(l) of the chain: | 1 |
 --|-----|
 (3) The sequence of the task type numbers: | 1 |
 --|-----|

Fig. 14-2 ISO-type workload derived from the classic non-multiprogramming
 batch benchmark (abbreviated representation)

 159

 6.Definition of the chain probabilities q(i,l)

 l | q(1,l) | i = number of user type
 ---|--------| l = number of chain type
 1 | 1.00 |

 7.Preparation time mean values h(i,j)

 j | h(1,j) | i = number of user type
 ---|--------| j = number of task type
 1 | 1.0 sec|

 8.Preparation time standard deviations s(i,j)

 j | s(1,j) | i = number of user type
 ---|--------| j = number of task type
 1 | 5.0 sec|

 C) Directory C2_AppProgr
 (…Programs…..)

 D) Directory C3_OSCP
 (…Operating system command procedures…..)

 E) Directory C4_RES
 (… Computational results…..)

 F) Directory C5_SData
 (…Stored data…..)

 G) Directory C6_SPAP
 File precision
 DELTAq = ….. DELTAh = DELTAs = ………
 File StatPar
 ALPHA =…… drel = ……

 H) Directory Prep
 (….Implementation tips, directions of how to make the
 application software on the SUT ready for measurement run,…)

Fig. 14-2 (cont.) ISO-type workload derived from the classic non-multiprogramming
 batch benchmark (abbreviated representation)

 160

Naturally checking computational correctness is mandatory (see Section 4.1). But checking
the DELTA criterion (see Section 4.2) in this special case is of very little importance. Violation
of the DELTA criterion would hardly influence the measured performance P values.

14.8.3.2 The classic multiprogramming batch benchmark

This benchmark typically uses more than one test program. The programs are started
simultaneously on the SUT and run in parallel. When the longest running program finishes the
test is stopped. Constructing the timeliness function we define only one time class. For the
time class limit we take the longest acceptable run time of the test, for instance 200 seconds.

The classic multiprogramming batch benchmark runs on a single-user machine. Therefore the
user entity consists of only one user. For starting the three programs at the same time we
define three task types, TT1 , TT2 , TT3 ; one for each program. All three task types have a
preparation time mean value of zero and the task mode M = 0. This ensures that they are
submitted without hesitation when started in a chain. All three task types have the same
timeliness function. As their individual run times are meaningless (due to the trick shown
below) we define the timeliness functions proper: One class with a time class limit of, for
instance 100 minutes.

A little trick is necessary because the ISO method does not provide a synchronisation
mechanism for the completion of two or more tasks. We write two little programs. The first
one, called "sync", does nothing but to wait for the completion of TT1 , TT2 and TT3 . The
second one does nothing at all. It is completely a dummy program, called "dummy". We create
two additional task types TT4 and TT5 . The activity type of TT4 is the program "sync". Its
task mode is M = 0. The activity type of TT5 is the program "dummy". Its task mode is M = 1.

The next step is to define a chain type consisting of the sequence TT1 , TT2 , TT3 , TT4 , TT5 .
Starting this chain submits TT1 , followed immediately by TT2 , TT3 and TT4 (the
synchroniser). But TT5 does not start immediately. It waits for the completion of TT4 (i.e. the
moment when the last of the three test programs has delivered its computational result). Then,
after a preparation time of for instance 1 second, TT5 is submitted. It does nothing (i.e. has a
nearly zero execution time). Its goal is only to avoid the start of a new chain before the actual
one is finished. When TT5 is completed the chain is completed and will be started again by the
RTE, and so on. The timeliness function of TT4 is important. It checks the longest run time of
the three test programs with respect to not exceeding the 200 seconds run time as set above.
For instance, we define for this timeliness function, two classes (200 seconds, 95%; 500
seconds, 100%). The timeliness function of TT5 is not very relevant. We assign to it the same
value as for TT1 (or TT2 or TT3). These data produce the content of the directory C1_WPS/ of
the workload.

The contents of the directories C2_AppPrgr/ , C3_OSCP/ , C4_Res/ , C5_SData/ and
Prep/ result from the original benchmark description (for the names of the directories see
Section 11.1). The directory C6_SPAP/ should contain suitable values (as for instance used

 161

in the workloads shown in Annex F of ISO/IEC 14756). These parts are omitted here by
reasons of shortness. They can be easily completed. This yields the workload as shown in
Fig. 14-3.

Measurement is simple. The duration of the RI would seem to be sufficient if it were long
enough for the once only execution of the chain. But for reasons of being able to check the
statistical significance of the execution time (see Section 4.3) the RI should be so long that it
includes some more times the execution of the chain. The reason is as follows: most execution
times will be nearly the same, but sometimes they may be quite different.

Concerning the measured performance (and the rating) the task types TT1 , TT2 , TT3 and TT5
are not interesting. Only the run time of TT4 is relevant.

Naturally checking computational correctness and is mandatory (see Section 4.1) and also
checking the DELTA criterion (see Section 4.2).

14.8.3.3 The "Debit-Credit Test" for OLTP systems

This famous benchmark (see [ANON01] and [GRAY01]) was developed in about 1984 for
measuring the performance of a large OLTP system of that time. It is one of the oldest
predecessors of the present time system performance measurement methods (for the term
"system performance measurement method" see Section 1.2). For reasons of simplicity this
test includes only a single transaction type consisting of four steps ("update account", "write to
history", "update teller", "update branch"). Before starting the transaction, 100 bytes of input
data is read from the teller's terminal. After completing the transaction, 200 bytes of data are
transferred to the terminal. The time from starting one transaction to the start of the next
transaction is defined to be 100 seconds. The Debit-Credit test includes an early predecessor
of the ISO timeliness function as follows: At least 95% of all transactions shall be completed
within 1 second. But there is no upper limit. The number of active users in the measurement is
increased as long as the cited condition ("95% tasks completed within 1 second") holds. This
implies the idea of measurement series (see Chapter 8).

For reasons of brevity additional details of the Debit-Credit test are not described here. Many
variations of the ISO WPS can be developed from this test. One variation is now shown.

We define only one activity type which executes the four steps ("update account", "write to
history", "update teller", "update branch") in sequence without a pause. Using this activity
type we define a single task type with the task mode M = 1. We include the typing of the 100
input bytes into the preparation time preceding the transaction. And we include the typing (the
SUT of that time had a teletype terminal) of the 200 output bytes into the preparation time of
the following transaction. We define a timeliness function with two time classes as follows:
the first time class limit is 1.0 sec and the r-value is 0.95 (following the Debit-Credit
specification). Because this same specification provides no data for the 2nd time class limit,
we will set our own limit to 5 seconds. The r-value per definition equals 1.0 . The mean value
of this timeliness function is
 (0.95 * 1.0 sec) + (0.05 * 5.0 sec) = 1.2 sec .
The mean preparation time is therefore: 100 sec - 1.2 sec = 98.8 sec .

 162

 A) File General
 (Short description and overview of the workload)
 B) File C1_WPS/wps (workload parameter set)

 1. Basic parameter values
 (1) Total number of different user types: n = 1 ;
 (2) Total amount of emulated users of each type: N_user(1) = 1
 (3) Total number of different activity types: w = 5 ;
 (4) Total number of different timeliness functions: p = 2 ;
 (5) Total number of different task types: m = 5 ;
 (6) Total number of different chain types: u = 1 ;

 2. Activity type definitions

(1)Activity type number:	1	2	3	4	5
 (2) The logical meaning | | | | | |
 of the input: | *) | *) | *) | **) | ***) |
 (3) The length (number) | | | | | |
 of characters) of | | | | | |
 the input string: | 5 | 5 | 5 | 4 | 5 |
 (4) The input string | | | | | |
 itself: | Prog1 | Prog2 | Prog3 | sync | dummy |
 (5) Activity type | | | | | |
 input variation: | none | none | none | none | none |

 *) Name of the shell script which has to be run.
 **) Name of an executable which has to be run.
 ***) Name of an empty shell script which has to be run.

 3.Task type definitions

(1) Current number j of the task type:	1	2	3	4	5
 (2) Number of the activity type: | 1 | 2 | 3 | 4 | 5 |
 (3) Value of the task mode M(j): : | 0 | 0 | 0 | 0 | 1 |
 (4) Type number of the timeliness function: | 1 | 1 | 1 | 2 | 1 |

 4.Definitions of the timeliness functions

(1) Order number of the timeliness function:	1	2
 (2) Number of time classes of this function: | z=1 | z=2 |
 ---|---------|---------|
 (3) z couples of values g_t and r_t, where | | |
 g_t is the time limit and r_t is the | | |
 maximum accepted relative frequency: g_t(1):| 100 min | 200 sec |
 r_t(1):| 1.00 | 0.95 |
 | | |
 g_t(2):| | 500 sec |
 r_t(2):| | 1.00 |
 ---|---------|---------|

Fig. 14-3 ISO-type workload derived from the classic multiprogramming batch
 benchmark (abbreviated representation)

 163

 5.Definitions of chain types

(1) The current number l of the chain type:	1
 (2) The length L_chain(l) of the chain: | 1 |
 --|---------|
 (3) The sequence of the task type numbers: |1,2,3,4,5|
 --|---------|

 6.Definition of the chain probabilities q(i,l)

 l | q(1,l) | i = number of user type
 ---|--------| l = number of chain type
 1 | 1.00 |

 7.Preparation time and 8. Preparation time
 mean values h(i,j) standard deviations s(i,j)

 j | h(1,j) | | s(1,j) | i = number of user type
 ---|--------|--|--------| j = number of task type
 1 | 0.0 sec| | 0.0 sec|
 2 | 0.0 sec| | 0.0 sec|
 3 | 0.0 sec| | 0.0 sec|
 4 | 0.0 sec| | 0.0 sec|
 5 | 1.0 sec| | 0.0 sec|
 ---|--------|--|--------|

 C) Directory C2_AppProgr
 (…Programs, see original benchmark description …..)

 D) Directory C3_OSCP
 (…Operating system command procedures, see original benchmark description…)

 E) Directory C4_RES
 (… Computational results, see original benchmark description …..)

 F) Directory C5_SData
 (…Stored data, see original benchmark description …..)

 G) Directory C6_SPAP
 File precision | File StatPar
 DELTAq = ….. DELTAh = DELTAs = ………| ALPHA =…… drel = ……

 H) Directory Prep
 (….Implementation tips, directions of how to make the application software on the SUT ready for
 measurement run …., see original benchmark description …)

Fig. 14-3 (cont.) ISO-type workload derived from the classic multiprogramming batch
 benchmark (abbreviated representation)

 164

 A) File General
 (Short description and overview of the workload)
 B) File C1_WPS/wps (workload parameter set)

 1. Basic parameter values
 (1) Total number of different user types: n = 1 ;
 (2) Total amount of emulated users of each type: N_user(1) = x
 The value of x will be set by the user of the workload.
 (3) Total number of different activity types: w = 1 ;
 (4) Total number of different timeliness functions: p = 1 ;
 (5) Total number of different task types: m = 1 ;
 (6) Total number of different chain types: u = 1 ;

 2. Activity type definitions

 (1) Activity type number 1:

 (2) The logical meaning of the input: input to the 4 transaction steps
 (3) The length (number) of characters) of the input string: 100
 (4) The input string itself and (5) activity type:
 Input variation, see original benchmark description

 3.Task type definitions

(1) Current number j of the task type:	1
 (2) Number of the activity type: | 1 |
 (3) Value of the task mode M(j): : | 1 |
 (4) Type number of the timeliness function: | 1 |

 4.Definitions of the timeliness functions

(1) Order number of the timeliness function:	1
 (2) Number of time classes of this function: | z=2 |
 ---|---------|
 (3) z couples of values g_t and r_t, where | |
 g_t is the time limit and r_t is the | |
 maximum accepted relative frequency: g_t(1):| 1.0 sec |
 r_t(1):| 0.95 |
 g_t(2):| 5.0 sec |
 r_t(2):| 1.00 |
 ---|---------|

 5.Definitions of chain types

(1) The current number l of the chain type:	1
 (2) The length L_chain(l) of the chain: | 1 |
 --|-----|
 (3) The sequence of the task type numbers: | 1 |
 --|-----|

Fig. 14-4 Proposal of the ISO-type workload derived from the Credit-Debit Test
 (abbreviated representation)

 165

 6.Definition of the chain probabilities q(i,l)

 l | q(1,l) | i = number of user type
 ---|--------| l = number of chain type
 1 | 1.00 |

 7.Preparation time mean values h(i,j)

 j | h(1,j) | i = number of user type
 ---|---------| j = number of task type
 1 | 98.8 sec|

 8.Preparation time standard deviations s(i,j)

 j | s(1,j) | i = number of user type
 ---|--------| j = number of task type
 1 | 0.0 sec|

 C) Directory C2_AppProgr
 (…Programs, see original benchmark description …..)

 D) Directory C3_OSCP
 (…Operating system command procedures, see original benchmark description…)

 E) Directory C4_RES
 (… Computational results, see original benchmark description …..)

 F) Directory C5_SData
 (…Stored data, see original benchmark description …..)

 G) Directory C6_SPAP
 File precision
 DELTAq = ….. DELTAh = DELTAs = ………
 File StatPar
 ALPHA =…… drel = ……

 H) Directory Prep
 (….Implementation tips, directions of how to make the
 application software on the SUT ready for measurement run,
 see original benchmark description …)

Fig. 14-4 (cont.) Proposal of the ISO-type workload derived from the Credit-Debit Test
 (abbreviated representation)

 166

These data produce the content of the directory C1_WPS/ of the workload. The contents of
the directories C2_AppPrgr/ , C3_OSCP/ , C4_Res/ , C5_SData/ and Prep/ result
from the original benchmark description (for the names of the directories see Section 11.1).
The directory C6_SPAP/ should contain suitable values (as for instance used in the
workloads shown in Annex F of ISO/IEC 14756). These parts are omitted here by reasons of
brevity. They can be easily completed. This yields the WPS as shown in Fig. 14-4.

The measurement is simple: Perform a measurement series (as explained in Chapter 8). Each
measurement is to be performed according to the ISO rules. The duration of the rating period
has to be sufficiently long, i.e. the statistic significance must be fulfilled. The performance
value B(1) when Ntot equals Nmax is the throughput which is used by the Debit-Credit test as
the performance measure.

The WPS in Fig. 14-4 is a simple first version. A more detailed version could contain the
following extensions: The 100 input bytes and the 200 output bytes each represent a separate
activity. Assign them fitting timeliness functions. This yields two additional task types. Then
define a chain type consisting of this three task types.

14.8.3.4 The SPECweb99 test for internet servers

The SPEC consortium (see http://www.specbench.org) published the intranet benchmark
SPECweb99 in 1999 (see [SPEC01]). In a research project carried out by the Kassel
University, (see [DIRLE04]) it was investigated whether the SPECweb99 test could be
converted to the ISO workload data model. The result was yes. An ISO-type workload sketch
is found in [DIRLE04] and also in directory
 CD/workload-sketches/Web99/
of the CD as part of this book. It contains only the parts which were developed by the Kassel
University performance laboratory, but for licensing reasons it does not contain application
programs and data of SPEC. They are available directly from SPEC for holders of a license.
The conversion project revealed a problem of the SPECweb99 test: There are too many chain
types and many of them have very small q-values (below 1%). The least is 0.5*10-8 .
Therefore the according task types do not normally appear in a measurement of typical
duration (for instance half an hour). Neither can the correctness of the execution of such a task
be checked nor can its execution time be determined. Also the statistical significance of a
measurement run will be not sufficient. These are not problems arising from the ISO method.
But the conversion of the SPECweb99 benchmark to an ISO-type workload pointed out this
problem. Up to this time it was unknown.

The solution was be found by redesigning the workload. Many of the infrequent chain types
were replaced by a suitable new chain type. Its task types used input variation (see Section
2.7.1) in order to realise random access to data files. This solution was also used in the Kassel
Internet Workload (see Section 14.8.3.5).

 167

14.8.3.5 The KS-Web workload for intranet servers

The experiences made in the project described in Section 14.8.3.4 were used for designing an
ISO type workload for intranet servers (see [DIRLE06]). A short sketch of it is shown in
directory
 CD/Workload-sketches/KS-Web/
of the CD as part of this book. The WPS includes 3 profiles of the intranet user community
(day time, evening and night). A profile is characterised by the numbers of users of the user
types (see WPS). The basic workload (for this term see Section 8.2) has Ntot = 10 users. This
is the minimum increment when increasing the user numbers in a measurement series. The
rule of having no q-values less than 0.05 (see Section 12.5) is obeyed.

14.8.3.6 The Kassel data warehouse workload

This workload concerns a so-called external data warehouse. Opposite to a traditional data
warehouse, that delivers decision support for the company itself, the external data warehouse
is a service of a company for its customers. In this example the company is a tax consultant.
The data warehouse is a service for his clients. The directory
 CD/Workload-sketches/ExternalDWH/
of the CD as part of this book is not the complete workload but only a short sketch.

There are 9 services, see file
 CD/Workload-sketches/ExternalDWH/C1_WPS/chains.txt .
Each of them is represented by a task chain. Each activity type is shortly outlined by a
scenario, see file
 CD/Workload-sketches/ExternalDWH/C1_WPS/Scenarios.txt .
Typical for the user entirety is that the users order only a few inquiries per hour even in the
rush hour. This yields long preparation times especially of task type number 1 (login). For
WPS and comments see file
 CD/Workload-sketches/ExternalDWH/C1_WPS/wps .
Using this WPS the measurement duration is long. Especially when only a small number of
users are emulated several hours are needed for getting statistical significance. It is typically
10 or 20 hours. A measurement will therefore mostly started in the evening and can run over
night.

For using summarised preparation times and execution times see file
 CD/Workoad-sketches/ExternalDWH/C1_WPS/times.txt .

14.8.3.7 An ERP workload

Enterprise resource planning (or ERP) is an industry term for application software systems
that are designed to serve and to support multiple business functions. An ERP software system
can include functions as for instance manufacturing, order entry, accounts receivable and

 168

payable, purchasing and transportation. The workload described here supports 4 applications:

 ● Financials and accounting (abbreviated AF)
 ● Materials management (abbreviated AM)
 ● Production planning (abbreviated AP)
 ● Sale (abbreviated AS)

These applications use a common database via a data base system. Employees always use only
OLTP transactions of one application not of more applications. User type 1 is an employee
using AF, user type 2 uses AM, user type 3 uses AP and user type 4 uses AS. The basic
workload (for this term see Section 8.2) has the following user numbers:

 Nuser(1) = 4
 Nuser(2) = 3
 Nuser(3) = 1
 Nuser(4) = 2

The Ntot value equals 4 + 3 + 1 + 2 = 10 . This is the minimum increment when increasing the
user numbers in a measurement series. In each application 5 or 6 (of many) OLTP transactions
are chosen for representatives. There are 21 representatives. Each step of an transaction type is
a task type. The steps of a OLTP transaction type make up a chain type. There are 21 chain
types and 110 task types. Despite of this high number are no problems concerning too small q-
values. This is due to the fact that a user only uses the chain types of his own application (see
WPS). The rule of having no q-values less than 0.05 (see Section 12.5) is obeyed. Therefore
the rating interval has an acceptable measurement duration for getting statistical significance.
About one or two hours are mostly sufficient (when Ntot is about 100 to 200 users).

A sketch of the workload (not the complete description) is found in directory
 CD/Workload-sketches/ERP-WL/
in the CD as part of this book.

An extension of the ISO method has proven to be useful for this workload. For getting
(additional to the ISO rating) a summarising rating of the timeliness the following procedure
was applied. After finishing the measurement and performing the ISO rating the records of the
logfile are sorted according to the timeliness function of the task type. This yields three classes
of records. The execution times of each class are processed according to Section 5.4.2 in order
to get the number of timely served tasks of each class. Hereof a timely throughput value of
each class is computed (using equation (5.9) of Section 5.4.1). Counting the number of tasks
in each class and dividing it by the (mean) duration of the rating interval yields the throughput
value of the class. Applying equation (7.12) of Section 7.6 produces a timeliness rating value
for each of the classes. Details when using the Urn method are omitted here. These 3
timeliness rating values proofed to be useful for a fast summarising rating of the timeliness of
the ERP system.

 169

14.9 Example structure of an ISO-type measurement system

This section roughly outlines an example structure that originates from the DEMO
implementation on the CD as part of this book. The RTE in DEMO has pregenerated task lists
(no dynamic generation, see Section 3.2). It uses the Urn Method (see Chapter 6). DEMO uses
a UNIX-SVR4 operating system.

14.9.1 The example structure

The steps of an ISO type measurement were explained in Section 9.1 . A flowchart of the
measurement procedure is given in Fig. 9-2 . There are 10 steps. Although it could be possible
to write some tools, steps 1 to 4 cannot normally be automated. The steps 5 to 10 can be
automated by a set of computer programs. Such a software system is an ISO-type
measurement system.

The ISO-type measurement system example consists of 11 modules, named M1, M2, M3, M4,
M5, M6-1, M6-2/1, M6-2/2, M6-3, M7, M8.

The input to a measurement is found in the directories C1_WPS/ to C_6SPAP/ of the
workload (see Section 11.1). The directories C2_AppPrgr/ , C3_OSCP/ and C5_SData/
contain programs and data that have to be installed on the SUT. The values of C1_WPS/ ,
C4_Res/ and C6-SPAP/ are input data of the RTE. The example structure of the
measurement system is shown in Fig. 14-5 .

All modules of the measurement system, except M2 and M4, are independent of the type,
manufacturer and operating system of the SUT. They can be written in any programming
language, preferably a high level language.

The module M4 depends on the operating system of the SUT and on the communication
protocols used at the interface between RTE and SUT. If the SUT uses another operating
system the module M4 has to be rewritten and to be adapted to this operating system. And -
naturally - if the communication protocols used by the workload differ from the above cited
ones the module M4 has also to be adapted. M2 depends on the operating system of the SUT
and has to be rewritten when the operating system of the SUT changes.

Note: The actual implementations of M2 and M4 of DEMO refer to a SUT having a UNIX
SVR4 operating system. The used communication protocols are "telnet" and "ftp" and some
others. ■

This yields a modular architecture as follows: For each SUT, a module M4 has to be written
according to the operating system of the SUT and communication protocols of the interface
between SUT and RTE. All other modules, except M2 discussed above, can be used without
alteration. The adaptation of M2 is a simple task, as may be seen in Section 14.9.2 below.

 170

Fig. 14-5 Example structure of an ISO-type RTE

C1_WPS C4_RES C6_SPAP/
precision

ISO workload

C6_SPAP/
StartPar

C2_AppPrgs
C3_OSCP
C5_SData

M1
Clean RTE

M2
Clean SUT homes

M3
Generate task lists

M4
Submit tasks

Set time stamps
Store computational

results

SUT
RTE

M5
Create ISO logfile

M6-1
Check SUT

computational
results for
correctness

M6-2/1
Check RTE

work for
sufficient
precision

M6-2/2
Check sufficient

overlap of
individual rating

intervals

M6-3
Check

staistical
significance

M7
Compute performance values

and rating values

M8
Save measurement data

DEMO programs

M1: Clean RTE
M2: Clean SUT
M3: DRIVE
M4: demo
M5: demo2din
M6-1: check-results (draft)

M6-2/1: CONV
M6-2/2: (programm
under construction)
M6-3: DINREA
M7: AUSBEW
M8: Save Mment

Application
programs and

stored data

Clean
commands

Tasks

Task
results

Task
lists

ALPHA
and
d(j)

values

Workload
parameter

set

Correct
compu-
tational
results

Raw
logfile
data

Computional
results

1
2

1

2

Logfile part 1: recorded tasks

Logfile part 2:begin/end of
(individual) rating intervals

 171

For an actual measurement the fitting modules M2 and M4 have to be inserted in the
measurement system. All other modules are ready for use without changes. This modular
architecture was used by the Kassel University performance laboratory. For Kassel's advanced
ISO measurement system (not DEMO), modules M2 and M4 were implemented for, among
others, the following SUT operating systems: UNIX-SVR4 (several dialects such as SUN-
Solaris, Siemens-SINIX, IBM-AIX, HP-UX, LINUX), WINDOWS-NT, Siemens-BS2000,
IBM-MVS, Univac-OS2000.

14.9.2 Short descriptions of the modules

A short explanation of each module and some general comments the implementation in the
DEMO system are given here. For remarks on the actual implementation of DEMO see
Section 14.9.3.

The modules have to be executed in the following sequence.

M1
This module deletes all unnecessary files from the home directory of the user running the
measurement system (measurement operator). It consists of a little program, named
"CleanRTE".

M2
This module deletes all unnecessary files from the home directories of the users which have an
account on the SUT, and which are to be emulated by the RTE. It consists of a little program,
named "CleanSUT".

M3
This module creates a set of three task files for each user. The first file contains the task list of
the stabilisation phase. The second file contains the task list of the rating interval. The third
file contains the task list of the supplementary run. The module consists of three programs
named "DRIVE", "dedula" and "dedula2demo". (The names are historical and have no
special significance.) They have to be executed in this sequence.

The Urn Method is implemented by program DRIVE . As ISO/IEC 14756 does not mention
the Urn Method, it does not offer a sample program for this method of task list generation. In
contrast, Annex E of the standard offer sample programs for the algorithms in some of the
following modules.

M4
This module processes the task lists. Its kernel will be started in parallel for each user being
emulated. If there are Ntot=4 users in the WPS, it will run 4 times parallel. Each process
executes task lists, first its stabilisation phase (StP), then in its rating interval (RI) and finally
in its supplementary run (SR). It also records the ISO logfile for the user he is emulating.

M4 consists of the program "demo". (The name is also historical.) "demo" is a simple
implementation (see Section 14.9.3, "Comment 8"). There is no mechanism for checking
whether the duration of the SR is fitting. This has to be controlled manually by the

 172

measurement operator when running the program "DRIVE" (see module M3). The Kassel
University ISO measurement system has, of course, automatic control of the SR. For
simplicity it was omitted in DEMO.

M5
This module merges the individual logfiles of all emulated users and creates the ISO-type
logfile of the measurement. The module consists of the program "demo2din". (Again, the
name is historical.) In the actual implementation of DEMO the ISO logfile is represented by
two parts: file "DIN.DAT" and file "ZEIT". DIN.DAT contains one record for each task
executed as specified in ISO/IEC 14756. ZEIT contains, for each user, the begin time (t1ind)
and the end time (t2ind) of its individual RIs (see Section 6.2.1). Individual RIs are necessary
for the urn method used by DEMO (see module M3).

M6-1
The purpose of this module is to check the correct working of the SUT (see Section 4.1). It
compares the computational results produced by the SUT during the individual RIs with the
correct results stored in the directory C4_RES/ of the workload. M6-1 consists of the
program "check-results". The program is written for workloads COMPCENTER1 and
COMPCENTER2. For another workload it has to be modified accordingly.

M6-2/1
This module computes the actual task chain frequencies, and the actual preparation time mean
values with their actual standard deviations from those logfile entries which belong to the
individual RIs. The computed values are checked against the DELTA values as defined in the
workload (in file C6_SPAP/precision). This checks for correct work of the RTE (see
Section 4.2).

M6-2/1 consists of the program with the historical name "CONV". Its input is the file
DIN.DAT (part 1 of the logfile). It computes the qmeas , hmeas and smeas values. These values
have to be checked, for practical demonstration, manually against the DELTA values as
defined in the workload (see Section 4.2).

M6-2/2
This module checks if the individual RIs have sufficient overlap (see Section 6.2.4). For
practical demonstration DEMO contains no program for this purpose. Checking has to be done
manually on the screen, against the values in file "ZEIT" (part 2 of the logfile), displayed with
an editor.

M6-3
This module performs the sequential test for statistical significance of the measurement results
(see Section 4.3). It consists of the program "DINREA", (again a historical name). DINREA
uses for input the files "DIN.DAT" (part 1 of the logfile) and "ZEIT" (part 2 of the logfile, the
begin and end times of the individual RIs). For a better understanding of this program you are
recommended to study intensively Appendix B.6 and the sample programs in Appendix E.6 of
ISO/IEC 14756 and in [DIRLE02]. DINREA uses the fast computation procedure as described
in Section 4.3.4.

 173

M7
This module consists of the historically named program "AUSBEW-ENG". It computes
performance values and rating values (see chapters 5 and 7) and writes a report of the
computed results and on the measured data. The module has four parts.
Part 1 computes the performance value P = (B, TME, E), see Chapter 5. For better under-
standing of this part you are recommended to study intensively Appendix B.3 and the sample
programs of Appendix E.3 of ISO/IEC 14756 and in [DIRLE02]. They show the somewhat
sophisticated algorithm of computing the values of E .
Part 2 computes the performance value PRef = (BRef, TRef, ERef) of the theoretical
reference machine from the values of the WPS (see Sections 7.2 and 7.3). For better
understanding of the algorithms you are recommended to study intensively Appendices B.1
and B.2 and the sample programs of Appendices E.1 and E.2 of ISO/IEC 14756 and in
[DIRLE02]. The sample programs show the slightly complex algorithm for computing TRef .
Part 3 computes the rating vector triple (RTH, RME, RTI). This part is easy to understand
(see Chapter 7).
Part 4 prints a listing of the measurement data including the values of the WPS.

M8
This module saves the data of the measurement run to the hard disk of the RTE for
documentation. It consists of the program "SaveMment".

14.9.3 Some comments on the actual implementation of DEMO

For the actual release of DEMO see file
 CD/DEMO-20/release.txt
of the CD as part of this book.

Comment 1
DEMO is not intended to be a tool for performing professional measurements, but only to
demonstrate the ISO method and to provide a better understanding of it. It is not guaranteed to
be free of errors or to correct results. But DEMO can show how to implement an ISO-type
measurement system.

Comment 2
DEMO is under GNU license. It is intended to be a starting point. Everybody is encouraged to
make improvements. The author of this book would be pleased to receive feedback from
readers making improvements.

Comment 3
DEMO is written for an ISO measurement system using a LINUX platform and for SUTs also
using LINUX as an operating system.

Comment 4
DEMO can be used by manually starting each module (in the sequence described in Section
14.9.2). This mode is intended for training and exercises. It allows the inspection of all files
and data created by a module. DEMO can also be used via the shell procedure
"runMeasurement" which is more convenient.

 174

Comment 5
DEMO has three versions of the module M4 (task submission). Version 1 is intentionally
simple ("simple demo"). It can execute only tasks which are a UNIX command or a call of a
shell. Version 1 of M4 is not really an external user emulator. So as to be simple and robust
the kernel of "simple demo" is only a UNIX shell running on the SUT itself. Therefore it is
more like an internal emulator. But practical experience showed that "simple demo" mostly
produces acceptable precisely results. Except for the fact that "simple demo" is not really
external there are no further restrictions to the full functionality of an ISO type RTE. Small
exceptions are reported in Comments 8 and 9. The interface between RTE and SUT uses
"telnet" and "ftp" for protocols. It can emulate a maximum of 99 users. For Version 2 and 3 of
M4 see below.

Comment 6
Version 2 of M4 is a real external user emulator. The interface between RTE and SUT uses
"telnet" and "ftp" for protocols. Contrary to Version 1 ("simple demo") it is only an
experimental version. It has not been properly tested. There are some problems with "telnet"
when the total number is more than about half a dozen. Version 2 is not yet delivered on the
CD as part of this book. An improved version is in preparation.

Comment 7
Version 3 of module M4 is intended for emulating users of an INTRANET. The
communication protocol is http (hyper text transfer protokoll). Contrary to Version 1 ("simple
demo") it is only an experimental version. It has not been properly tested. Version 3 is not yet
delivered on the CD as part of this book. An improved version is in preparation.

Comment 8
For reasons of simplicity and for historical reasons DEMO does not implement all details of
ISO/IEC 14756 functionality for automatic operation. Also for reasons of simplicity DEMO
has no mechanism for automatically checking whether the duration of the SR was suitable.
The duration has to be set manually by the measurement operator when running the program
"DRIVE" (see module M3). The operator has to ensure that the SR is sufficiently long. A
proposed improvement of DEMO (among others) is an extension of the module M4 for
checking whether all tasks of the RI are completed by t2 or t2ind . The DEMO would then be
able to terminate automatically the SR.

Comment 9
 1. DEMO does not automatically check the tasks of the SR for the correct computation of
their results and for keeping the DELTA criterion. These checks have to be performed
manually. A proposed improvement of DEMO (among others) is to implement these checks.
 2. DEMO omits the sixth entry in the logfile (sequential number of the task within its chain),
see Section 3.4 . A proposed improvement of DEMO (among others) is to add this entry to the
logfile. Additionally the correct complete sequence of each chain in the logfile should be
checked. Also a proposed improvement of DEMO (among others) is to implement this
functionality.

 175

14.10 Applicability of the ISO method for measuring
 component performance

The ISO method was developed for measuring the performance of a complete IP system.
There is an interesting question. Is the basic idea of the ISO method applicable for measuring
the speed of a component of an IP system ? If yes, then is there a second question. Is there a
possible benefit of such a measurement result ?

The first question, on applicability, can be answered as follows. The component being
measured, for instance a hard disk or a RAID array, has to be regarded as a black box. Its user
entirety is the complete hardware environment. The interface between this black box and its
user entirety is the system cable to the disk unit. The activities of the tasks submitted to the
black box are the read and write operations. Using them for building activity types the task
types can be defined. Also timely functions can be defined and the task mode M can be
determined. A suitable test bed can be a suitable computer. A measurement can be performed
to determine the access rates (total throughput B), the rates of timely executed access
operations (E) and the mean access times (TME). Each of this three terms is specified for each
of the task types, producing
 P = (B(1),... B(m); TME(1),...TME(m); E(1),...E(m)) .

Also a detailed rating (in sense of the ISO method) is possible, which produces the R-values.

If, however the component being measured is the CPU, an analogous scenario of a task
generating environment (user entirety) and a task executing unit (black box "CPU") can be
defined. The activity types are the machine instructions. The basic idea of the ISO method can
also be applied.

Alternatively the ISO method could be applied to a data network as a black box. The tasks are
the data transportation operations.

The second question, on possible benefit, can be answered as follows. The application of the
ISO method to the measurement of components is an improvement on present methods. The
term "performance" would be defined meticulously and would be measured more precisely.
This would be a benefit and an advantage for engineers developing and producing components
of IP systems. But using the ISO method for measuring components would scarcely be a
contribution to the following well known unsolvable problem: It is usually not possible to
compute the system performance value(s) of an IP system from the performance value(s) of its
components.

 176

14.11 Short comparison of some other methods with the ISO method

Note 1: This section refers only to methods for measurement of system performance values
(i.e. to system performance as defined in Section 1.2) and not to component performance.
Therefore batch benchmarks, graphic interface card benchmarks, super computer CPU
benchmarks, RAID storage benchmarks, etc. are not considered in this section. ■

Note 2: In the Sections 14.8.3.1 and 14.8.3.2 some aspects of batch benchmarks are explained.
Additionally, it is pointed out here that a batch benchmark does not realise an external user
emulator. It is an internal emulator contrary to the ISO method which uses an external user
emulator. ■

Note 3: This comparison is not intended to be a comprehensive report. Much more it is only a
selection of present day system performance measurement methods. ■

14.11.1 Incomplete list of commonly used system performance
 measurement systems

The title of this section is to be understood literally. Many benchmarks appear every year.
Important ones may be among them. Many new published benchmarks disappear after a short
time because they are too specialised even when they have good ideas or an exceptional good
theoretical basis. Many of them disappear because they are ad hoc solutions for just short time
problems. The author has selected the following list of systems in the hope that they may be of
reasonably long-term importance.

a) Monolithic benchmark systems
 (See Section 1.6, items 3 and 5)

1. Names: TPC-C, TPC-H, TPC-R, TPC-W
 Publisher: Transaction Processing Performance Council
 (http://www.tpc.org)

2. Names: SPECapc, JBB2000, jAppServer2001, jAppserver2002,
 MAIL2000,SFS97_R1, SPECweb99, SPECweb99SSl
 Publisher: Standard Performance Evaluation Corporation
 (http://www.specbench.org)

3. Name: OLTP
 Publisher: Fujitsu Siemens Corporation
 (http://www.fujitsu-siemens.de)

4. Names: NetBench, WebBench
 Publisher: Veritest, Division of LioNBRIDGE
 (http://www.veritest.com)

 177

5. Name: BaanERPsuite (about 8 benchmarks)
 Publisher: SSA Baan Company
 (http://www. baan.com)

6. Name: Oracle Application Standard Benchmark Version 11
 Publisher: Oracle Corporation
 (http://www.oracle.com/apps_benchmark)

7. Names: SYSmark2004, webmark2004
 Publisher: BAPCO Corporation
 (http://www.bapco.com)

8. Name: Exchange Server Benchmark MMB2
 Publisher: Microsoft Corporation
 (http://www.microsoft.com)

9. Names: NotesBench, Server.Load
 Publisher: Lotus Notes Consortium
 (http://notesbench.org)

10. Names: SAP Application Benchmarks (about 18 benchmarks)
 Publisher: SAP Corporation
 (http://www.sap.com/benchmark)

b) General purpose measurement systems

11. Name: SilkPerformer
 Publisher: Segue Software Inc.
 (http://www.segue.com)

12. Name: LoadRunner
 Publisher: Mercury Interactive Company
 (http://www.mercuryinteractive.com)

13. Name: QALoad
 Publisher: Compuware Corporation
 (http://www.compuware.com)

14. Name: Robot
 Publisher: Rational
 (http://www-306.ibm.com)

15. Name: S_ATURN8000
 Publisher: Zott+Co Company
 (http://zott.net)

 178

14.11.2 Short comparison

This comparison of the systems cited in Section 14.11.1 focuses on the principles used in the
benchmarks. It does not deal with aspects of marketing, economics, costs of the benchmarks,
etc. . The comparability of produced measurement results between the different methods is not
considered. This is especially due to the fact that most benchmark developers make strong
claims for the uniqueness of their measures and the incompatibility of their measured results to
different benchmarks.

Sytems No. 1 to 10:
All of these systems are monolithic systems (see Section 1.6, items 3 and 5). I.e. the
measurement method, the performance terms and the workload are developed and defined as
one unit. The method cannot use a different workload type. The scenario of the workload, the
workload parameters, the application programs of the SUT, etc., are a fixed set of
interdependent elements. Only some parameters of the workload, for instance the number of
active users or the size of the database, can be modified. Contrary to the ISO method, the
workload is not described using a general purpose data model. One reason (among others) for
this situation is probably that the main steps of the design of the benchmark were done before
the ISO/IEC 14756 was published. Timeliness functions are not used or only used indirectly.
One example of such an indirect (or incomplete) use is the TPC-C test. 95% of the response
times may not exceed 2 seconds. But there is no upper limit. Contrary to the ISO method,
which always uses an external user emulator, some of the methods use an internal emulator.
The think times of the users (preparation times) do not vary randomly in all methods. Often
they are constant. Some of the methods are "ready for run benchmarks" as used by the ISO
method. Others are "high level benchmarks". Checks for the correct operation of the SUT or
the RTE are realised only in a few of the methods. But, if there are checks, they are not so
strict as in the ISO method. A check for the statistical significance was not found anywhere.
Most of the methods define an auditing procedure (contrary to the ISO method which is
restricted to technical aspects). The performance measures of the methods are very different
and do not agree with those of the ISO method. Mostly, the measures are very simplifying.
Simplifications are for instance: Use of the mean response time of all tasks and not
differentiated to each task type; total maximum possible throughput of all tasks regardless of
the execution time category. Each publisher of the methods emphasises that his performance
terms are very different from all other methods. He also emphasises that the measured values
cannot be converted to the terms of any method of another publisher or even to another of his
own methods. The final aspect to be investigated is the rating. A rating of the measured
performance to the user requirements is hardly ever realised (contrary to the ISO method).
Only those measurement methods that use the maximum number of served users as a
performance measure include indirectly a rating (example: TPC-C). This rating is not so strict
as the ISO rating.

Systems No. 11 to 14:
These systems are not monolithic. They are able to use different workload types. The
workload is typically created by tracing a real user session. The tracing produces so-called
scripts. They are comparable to a sequence of task chains of the ISO method. Some
parameters of the scripts, as for instance the think times, can be modified before being used by
the mostly external user emulator. But the workload description method is not in accordance
with the ISO workload parameter set. A workload defined by use of the ISO WPS cannot be

 179

processed by the systems as an input to the RTE. There is no task generation according to the
ISO method, neither in the sense of pre-generated task lists nor in the sense of dynamic
generation. No timeliness functions, as defined by ISO, are used. The performance measures
are simpler than those of the ISO method. A rating of the measured performance values with
respect to the users performance requirements is either not implemented at all, or not in
accordance with the ISO method. But most of the systems use a term as a performance
measure which has the meaning of a maximum number of users served. Therefore, indirectly
they include a rating. It is less satisfactory than the ISO rating. The correct working of the
RTE and the SUT is usually checked somehow. But there is no checking for the statistic
significance of the performance values.

System No. 15:
This system includes the complete implementation of ISO/IEC 14756. Additionally it contains
tools for determining an ISO WPS from tracing a real user session. The system is developed
for professional use, also with a large number of emulated users and all types of application
software. It is able to use a wide spectrum of protocols of the interface between the RTE and
the SUT (also INTRANET/INTERNET network protocols). It is not an experimental system.

14.12 Applying ISO/IEC 14756 to Function Point Measurement
 (Written by Eberhard Rudolph)

14.12.1 Overview

Function Points are a normative unit of measure of software size. Function Points are derived
from elementary function types contained in software user requirements of computer systems.
The principles of Function Point are defined by ISO/IEC 14143-1 [ISO14143]. There are
several different Function Point metrics. Detailed guidance in deriving Function Point results
can be found in ISO/IEC 19761 [ISO19761] and [IFPUG01].

Traditionally the use of Function Points has been restricted to the development and
maintenance of computer software. Typical applications would be estimation of software
development time or determining the productivity of software development. A detailed
summary of conventional Function Point applications can be found in [JONES01].

Rudolph and Dirlewanger [RUDOL01] proposed to expand the use of Function Points to
quantify the consumption of software. Using the principles of ISO/IEC 14756 they
demonstrated the feasibility of correlating activated Function Points with the consumption of
computing resources.

ISO/IEC 14756 uses tasks (or user transactions) as basic form of software delivery. The
Function Point technique provides a quantitative measure for such tasks.

14.12.2 Activated Function Points (AFP)

Using established Function Point metric concepts it is proposed to measure the use of software
by Activated Function Points (AFP). An Activated Function Point is a Function Point of a
function type (or task in ISO/IEC 14756 terminology) performed for the user.

 180

Monitoring (or estimating) the consumption of Function Points provides a new form of
management information. It will assist capacity planning, resource consumption estimation,
analysis of the effectiveness of operations management and evaluation of the performance of
delivery platforms. In addition, Function Point consumption measurement will enable service
suppliers to charge in a user understandable form, based on functionality delivered rather than
computer resources consumed.

14.12.2.1 Deriving AFP

In a first step the function types contained in the software to be measured are identified and
classified using the counting rules of the established Function Point techniques. Each time a
transaction function type (for the IFPUG method a transaction function type EI, EQ, or EO) is
executed its Function Point value is added to the AFP value.

ISO/IEC 14756 is based on tasks. Therefore only transaction (task) function types can be
considered by AFP. The ISO/IEC 19761 FFP method (see [ISO19761]) is based on
transactions and does not contain any other function types. Therefore all FFP functions will be
considered in an AFP count.

The IFPUG Function Point method distinguishes between transaction and data function types.
AFP will only include transaction function types (EI, EO and EQ). The data function types
(ILF and EIF) of the IFPUG method have to be excluded. Indirectly data function types are
already considered in the transaction type functions. When calculating the Function Points of a
transaction function type the FTR (File Type Referenced) consideration largely determines the
value.

The provision of IFPUG data function types (particularly ILFs) can be measured by alternative
metrics such as number of records (or instances) stored.

14.12.2.2 AFP example

Let’s assume a simplistic Human Resources application has just one single EI, EQ and EO
function. Let’s further assume that the FP value of the EI is 4 FP, of the EQ is 3 FP and of the
EO is 7 FP. If during one hour the users performed 20 EIs, 10 EQs and 3 EOs then there
would be counted:

20*4 + 10*3 + 3*7 = 131 Activated Function Points (AFP).

The Human Resources application delivered 131 AFP during that hour.

14.12.3 Using AFP with ISO/IEC 14756

Rudolph and Dirlewanger introduced AFP to the ISO method as follows: In a first step the
Function Points of the SUT were identified and counted. For a defined user entity the WPS is
to be determined. Rudolph and Dirlewanger then propose to perform the following series of
measurements in the ISO test bed:

 181

Starting from one the number of users is increased until the maximum number of users Nmax is
obtained which can be served timely by the measured IT system. In case of n > 1 user types
the measurement series starts from the minimum increment for number of users (see Section
8.2). All other values of the WPS remain unchanged.

The throughput values (i.e. the transaction rates) in this situation are named Bmax(1),
Bmax(2),.... for the first, second,.... transaction type. Let be FP(1) , FP(2) ,.... the function
point value of the first, second,.... transaction type. The AFP value corresponding to the j-th
transaction type is:

 AFP(j) = Bmax(j) * FP(j) . (14.1)

The total rate of AFP is:

 AFPtot = AFP(1) + AFP(2) + AFP(m) . (14.2)
where m is the number of transaction types. The average rate of AFP flowing per user is:

 AFPav = AFPtot / Nmax . (14.3)

If needed the individual AFP rate AFPuser(x) of the defined user x can be computed
similarly from the measured transaction rates in the Nmax case.

It is important to note the following points:

1. AFPtot is the maximum rate of AFP which can be served "timely"
 by the SUT.
2. When increasing the number of users beyond Nmax then the IT
 system will probably produce an AFP rate greater than AFPtot .
 But the users will have unsatisfying long response times
 (execution times). I.e. the service levels required by the
 users are no longer fulfilled.
3. When decreasing the number of users below Nmax the system will
 operate below accepted peak performance.

14.12.3.1 SAP-R/2 measurement

To demonstrate the feasibility of the proposed approach Rudolph and Dirlewanger
[RUDOL01] used a major SAP R/2 test performed 1994 in a mainframe environment. This
example also demonstrates the possibility to apply the AFP analysis to existing ISO/IEC
14756 test results. Using the task specifications for the selected R/2 the AFP results could be
derived from the original measurements.

 182

The standard SAP-R/2 test system used was developed by highly experienced SAP staff. The
measurement was originally performed in 1994. The mainframe used was an IBM ES9121-
190 with 8 Gartner-MIPS and 64 MB main storage. The operating system was
MVS-ESA 4.3.0.

For details of the experiment and its environment see [DIRLE05].

Fig. 14-6 lists the components of the SUT. Four modules of the SAP-R/2 system were used:
Financial Accounting (RF) 40% of the users, Materials Management (RM-MAT) 30% of the
users, Production Planning and Control (RM-PPS) 10% of the users and Sales and Distribution
(RV) 20% of the users. There were 4 user types, one for each SAP module. The total number
of transaction types was 15. Note that RM-PPS transactions TD41 and TL06 were
amalgamated since they did always run together.

 Fig. 14-6 SAP-R/2 example

The think time (preparation time) shown in Fig. 14-6 is in seconds. The Function Point
assessment was done without access to the detailed functional description of the individual
SAP R/2 transactions. The FP results were obtained from the input data elements. The
referenced logical files were derived from the input data and it was assumed that an access
control file was used with all transactions.

The timeliness requirements in this measurement were more complex. Each R/2 transaction
was broken down to several internal steps. There were three types of steps defined. Their
timeliness functions are:

 a) Simple data entry : 90% < 2 sec, 100%< 4 sec; avg. 2.2 sec
 b) User dialog : 60% < 4 sec, 100%< 8 sec; avg. 5.6 sec
 c) Background job : 80% < 30 sec,100%< 60 sec; avg. 36.0 sec

Application Transaction Frequency (%)
Think
Time

Timeliness
(sec)

Type FP

 RF
TB01
TB03
TB05
TB14
TS21

30
10
25
25
10

90
45
75
50
50

20
10

16.5
10
10

EI
EQ
EI
EQ
EQ

6
4
6
6
4

 RM-MAT
TE21
TE24
TL01
TL11
TR01

20
20
20
20
20

100
45
60
60
80

23
10
13
13
23

EI
EQ
EI
EI
EI

6
4
4
6
6

 RM-PPS
TD41 + TL06
TD43
TD56

40
30
30

70
65
60

56
13.2
10

2 EI
EQ
EO

10
3
7

 RV TA01
TB03

50
50

115
55

33
10

EI
EQ

6
4

 183

Each transaction could contain several of each these steps. In most cases 2/3 of the steps were
of type "a)" and 1/3 of type "b)". The timeliness (mean) values of the individual transactions
shown in the table (i.e. TRef value of the transaction) are the rounded sums of the individual
steps of the transaction.

The ISO type performance measurement found the maximal number of users Nmax = 110 users.

The duration of the measurement is set by the ISO procedure ensuring that statistically
significant results are produced. In this experiment the duration of the measurement was
25.24 minutes. In this time 11404 AFP were processed. The throughput was

 AFPtot = 451.82 AFP/min.

The average rate of AFP flowing per user is

 AFPav = 4.11 AFP / min and user.

In this experiment the number of used SAP R/2 transaction types was intentionally taken low
in order to limit the amount of manpower and cost of the experiment. There are no principal
limitations to include in the ISO user model a large number of transaction types, to represent
them in the WPS, and to perform the measurement.

14.12.4 Limitations

Function Points do not consider the size of business data. In some instances when correlating
AFP with the use of computer resources the size of application files may have an impact. An
external output function type, such as the printing of a telephone directory, may require
considerably less computing resources for a small telephone listing file of a few hundred
listings compared with the same function having to produce a directory for a million entries.
Special consideration is required when using AFP in a workload containing a considerable
amount of transactions which process complete business files rather than just a few records.

14.12.5 Opportunities

Quantifying the SUT using Function Points enables the ISO/IEC 14756 standard to provide
comparative performance data. Applied software measurement techniques (see [JONES01])
already available and used for the development of software, can be extended to include the
delivery of software functionality.

 184

 185

Appendix A: CD as a part of this book

1. Foreword
 See file CD/Foreword-of-this-CD.txt

2. Contents
 File CD/Contents-of-this-CD.txt

3. GNU General Public license
 See file CD/GNU-gpl.txt

4. ISO-IEC 14756 original workloads
 See directory CD/iso14756-orig-workloads/

5. Logical steps of the OSCPs of the ISO computer centre workloads
 See file CD/Supplement-to-ISO14756.pdf
 Contents: ● Workload COMPCENTER1
 ● Workload COMPCENTER2
 ● Workload COMPCENTER3

6. Two ISO workloads converted for LINUX SuSE 9.1
6.1 Workload COMPCENTER1
 See directory CD/Linux-workloads/CC1-Linux9/
 Installation:
 see file CD/Linux-workloads/Install-CC1-Linux9.txt
6.2 Workload COMPCENTER2
 See directory CD/Linux-workloads/CC2-Linux9/
 Installation:
 see file CD/Linux-workloads/Install-CC2-Linux9.txt

7. Sketch of the ISO workload COMPCENTER1,
 converted for NT 4.0
 See directory CD/NT-workloads/

8. Sketches of some ISO type individual workloads
 See directories
 CD/Workload-sketches/ERP-WL/
 CD/Workload-sketches/ExternalDWH/
 CD/Workload-sketches/KS-Web/
 CD/Workload-sketches/Mainframes/
 CD/Workload-sketches/Web99/

 186

9. Measurement system DEMO 2.0 (implemented for LINUX SuSE 9.1)
9.1 Manual
 See directory CD/DEMO-20/DEMO-manual/
9.2 Software
 See directory CD/DEMO-20/DEMO-sw/
9.3 XDEMO
 See file CD/DEMO-20/XDEMO.txt

10. Detailed documentation of a measurement using DEMO
 See directory CD/Mexample/

11. Solutions of exercises
 See directory CD/Solutions/

12. Files of the exercises
 See directory CD/Sol-files/

Note 1: This compact disc was created using a LINUX operating system. If using
another operating system for reading it is not guaranteed that correct data are
obtained or displayed, but ".txt" files, ".email" files and files named readme or
README can be displayed also by WINDOWS Editor or WordPad . ".pdf" files can
be opened by ACROBAT reader. ■

Note 2: For extracting the "tar" archives
see file CD/Contents-of-this-CD.txt . ■

 187

References

[ALLEN01] Allen, A. O.: "Introduction to computer performance analysis with
 Mathematica", AP Professional, Harcourt Brace & Company Publishers,
 Boston, 1994, ISBN 0-12-051070-7

[ANON01] Anon, et al: "A measure of transaction processing power",
 DATAMATION, International Edition, Issue April 1985, pp. 112 - 118

[BOLCH01] Bolch, G.: "Performance evaluation of computer systems using queuing
 models", B. G. Teubner Publishers, Stuttgart, Germany, 1989,
 ISBN 3-519-02279-6 (German title: "Leistungsbewertung von
 Rechensystemen mittels analytischer Warteschlangenmodelle")

[DIN01] German National Standard DIN 66273: "Measurement and rating of data
 processing performance",
 Part 1: "Measurement and rating method",
 Part 2: "Standard workload type A",
 Part 3: "Standard workload type B",
 Part 4: "Standard workload type C",
 Beuth-Verlag GmbH, Burggrafenstraße 6, 10772 Berlin,
 Germany, 1991 - 2002. This standard is written in German language.
 (German title: "Messung und Bewertung der Leistung von DV-Systemen".)
 An English translation of Part 1 is available by DIN:
 Paper UDC 681.3:53.08:003.62 .

[DIRLE01] Dirlewanger, W.:"A remote terminal emulator for measuring
 DP performance, based on a new definition of data processing
 performance", DAS RECHENZENTRUM, Issue 1/1986, pp. 19 -24,
 C. Hanser Publishers, Munich, Germany, ISSN 0343-317X,
 (German title: "Ein Treiber zur DV-Leistungsmessung auf der Basis
 eines neuen Leistungsbegriffes")

[DIRLE02] Dirlewanger, W.: "Measurement and rating of data processing
 performance", Huethig Buch Verlag GmbH, Heidelberg, Germany, 1994,
 ISBN 3-7785-2147-0 (German title: "Messung und Bewertung der
 DV-Leistung auf Basis der Norm DIN 66273".)

[DIRLE03] Dirlewanger, W.: "The DIN method, a new approach for measuring rating
 data processing performance", Proceedings IEEE International Computer
 and Dependability Symposium IDPS 96 Illinois, pp. 200 - 209, IEEE
 Computer Society Press, Los Alamitos, CA, 1996, ISBN 0-8186-7484-9

[DIRLE04] Dirlewanger, W.: "ISO type representation of the internet workload
 SPECweb99", Technical report (July, 20th, 2001), University of Kassel,
 Dpt. of Mathematics and Computer Science, working group Performance
 Measurement, 34132 Kassel, Germany, Heinrich Plett-Straße 40.
 (For a copy see directory workload-sketches/Web99/ in the CD
 which is part of this book.)

 188

[DIRLE05] Dirlewanger, W.: "Performance Measurement using a SAP workload,
 applying a new measurement method for mainframes", Proceedings of the
 Annual Meeting of the Computer Measurement Group Central Europe
 (CMG-CE), paper Nr. 7, pages 1 - 29, May 1995, Königwinter.
 (German title: "DIN-Leistungsmessung mit einer SAP-Last, Erprobung der
 neuen Methode im Mainframe-Bereich".)

[DIRLE06] Dirlewanger, W.: "A intranet workload, described by the ISO workload
 model", Technical report (July, 29th, 2001), University of Kassel, Dpt. of
 Mathematics and Computer Science, working group Performance
 Measurement, 34132 Kassel, Germany, Heinrich Plett-Straße 40.
 (For a copy see directory workload-sketches/KS-Web/
 in the CD which is part of this book.)

[GRAY01] Gray, J.: "The benchmark handbook for database and transaction processing
 systems", Morgan Kaufmann Publishers, San Francisco, CA, 1993,
 ISBN 1-55860-292-5

[IFPUG01] "IFPUG Function Point counting practices manual, Release 4.2",
 International Function Point User Group,
 191 Clarksville Road Princeton Junction, NJ 08550, USA, 2005.

[ISO14143] International Standard ISO/IEC 14143-1:1998 "Information technology
 Software measurement - Functional size measurement - Definition of
 concepts". ISO/IEC Copyright Office, Case Postale 56,
 CH 1211, Genève 20, Switzerland, 1999

[ISO14756] International Standard ISO/IEC 14756: 1999:(E), "Information technology –
 Measurement and rating of performance of computer-based
 software systems", ISO/IEC Copyright Office, Case Postale 56,
 CH 1211, Genève 20, Switzerland, 1999

[ISO19761] International Standard ISO/IEC 19761: 2002, "Software Engineering –
 COSMIC-FFP: Functional size measurement method",
 ISO/IEC Copyright Office, Case Postale 56,
 CH 1211, Genève 20, Switzerland, 1999

[JAIN01] Jain, R.: "The art of computer systems performance analysis; Techniques for
 experimental design, measurement, simulation and modelling",
 John Wiley & Sons Inc., New York, 1991, ISBN 0-471-50336-3

[JONES01] Jones, C. "Applied software measurement: assuring productivity and
 quality", McGraw-Hill, New York, 2nd edition, 1996, ISBN 0-07-032826-9

[RUDOL01] Rudolph, E. and Dirlewanger, W. "Applying Function Points to the
 delivery of IT services", International Function Point User Group,
 191 Clarksville Road Princeton Junction, NJ 08550, USA,
 IFPUG 2002 Annual Conference,
 San Antonio, TX, 24-27 Sept 2002, pp.197-226.

[SPEC01] "SPECweb99 Benchmark", Standard Performance Evaluation Corporation
 (SPEC), 6585 Merchant Place, Suite 100, Warrenton, VA 20187, USA

 189

Abbreviations

AFP = activated function points

APS0 = reference application software

APS1 = the actual application software to be measured for software run time efficiency

ASCII = American standard code for information interchange

AT = activity type

C = the programming language called "C"

CD = compact disc read only memory

chap. = chapter

COBOL = the Common Business Oriented (programming) Language

COM = computer output on microfilm

COSMIC = Common Software Measurement International Consortium

CPU = central processing unit

CT = chain type

DEMO = a demonstration system of the ISO measurement method

EI = external input (a transaction function type)

EIF = external interface file (a data function type)

EO = external output (a transaction function type)

EQ = external inquiry (a transaction function type)

eq. = equation

ERP = enterprise resource planning

FFP method = full function point method

Fig. = figure

FORTRAN = the programming language "formula translator"

FP = function point

FTR = file type referenced

GFLOPS = giga floating operations per second

GNU license = Open Source Foundation software license

http = hyper text transfer protocol

HW = hardware

IFPUG = International Function Point User Group

ILF = internal logical file (a data transaction function type)

I/O = Input/Output

 190

IP system = information processing system

IP0 = reference system for software efficiency measurement

IP1 = the actual IP system when measured software run time efficiency

ISO = International Standardisation Organisation

JAVA = the platform-independent object-oriented programming language

LATEX = text system for natural sciences

LINUX = the "GNU-licensed" UNIX type operating system

 developed by Linus Thorwaldsen

MIPS = million instructions per second

OLTP = online transaction processing system

OP = observation period

OSCP = operation system command procedure

PC = personal computer

PDF = Adobe encrypted text

PS = post script

RAID = redundant array of independent disks

REP = replication factor of "activities" in a task

RI = rating interval

RTE = remote terminal emulator

sect. = section

SR = supplementary run

SS-nU = non-UNIX type system software

SS-U = UNIX type system software

StP = stabilisation phase

SUT = system under test

SW = software

TEX = text system for natural sciences

TF = timeliness function

UNIX = the "open" multi-user operating system

UNIX-SVR4 = UNIX system V release 4

WPS = workload parameter set

 191

Symbols
(symbol – description – reference section(s))

a(j,l) number of tasks of the j-th task type within a
 chain of the l-th type, 7.3.2

AFPav average rate of activated function points,
 flowing per user, 14.12.3

AFP(j) activated function point value corresponding to
 the j-th task type, 14.12.3

AFPtot total rate of activated function points, 14.12.3

AFPuser(x) individual rate of activated function points
 of user x, 14.12.3

ALPHA confidence coefficient, 2.9.3, 4.3.2

ATj j-th activity type, 2.3

B throughput vector, 5.1, 5.2

b same as b(j) but index j omitted for
 shortness, 5.4.2

B(j) throughput of the j-th task type, 5.1, 5.2

Bmax(j) throughput of the j-th task type in case of
 Ntot equaling Nmax, 14.12.3

b(j) total number of tasks of the j-th task type
 submitted during the rating interval, 5.2

B0 throughput vector of the reference system IP0 for
 software run time efficiency measurement, 10.3.2

B0(j) throughput of the j-th task type of the reference
 system IP0 for software run time efficiency
 measurement, 10.3.2

B1 throughput vector of the system IP1 the SW
 efficiency of which is to be measured, 10.3.2

B1(j) throughput of the j-th task type of the
 system IP1 the software run time efficiency
 of which is to be measured, 10.3.2

Bind(j) throughput of the j-th task type in the
 individual rating interval, 6.2.2.1

 192

bind(j) total number of tasks of the j-th task type
 submitted during the individual
 rating interval, 6.2.2.1

bind(v,j) total number of tasks of the j-th task type
 submitted by the v-th user during its
 individual rating interval, 6.5.1

Bind(v,j) throughput of tasks of the j-th task type
 submitted by the v-th user during its individual
 rating interval, 6.5.1

BRef reference vector of throughput, 7.2, 7.3.2

BRef(j) reference value of throughput of tasks of
 the j-th task type, 7.3.2, 7.2

bRefClass(k) reference value of total number of tasks in the
 k-th time class, 5.4.2

CTl l-th chain type, 2.4

d half width confidence interval, general, 4.3.2, 2.9.3

d(j) half width confidence interval of the
 preparation time mean value of tasks of the
 j-th task type, 2.9.3

drel relative half width confidence interval, 2.9.3

DELTAh same as DELTAh(i,j) in case of being uniquely for
 all user types and all task types, 2.9.2, 4.2.3

DELTAh(i,j) maximum tolerated relative difference of the mean
 preparation times of tasks of the j-th task type
 to the required mean preparation time; this term
 refers to the tasks submitted by the users
 of the i-th type, 4.2.3

DELTAq same as DELTAq(i,l) in case of being uniquely for
 all user types and all chain types, 2.9.2, 4.2.2

DELTAq(i,l) maximum tolerated relative difference of the
 relative chain frequency of chains of the l-th
 chain type to the required relative chain
 frequency; this term refers to the chains
 submitted by the users of the i-th type, 4.2.2

DELTAs same as DELTAs(i,j) in case of beeing uniquely for
 all user types and all task types, 2.9.2, 4.2.4

 193

DELTAs(i,j) maximum tolerated relative difference of the
 standard deviation of the mean preparation times
 of tasks of the j-th task type to the required
 standard deviation; this term refers to the tasks
 submitted by the users of the i-th type, 4.2.4

DIFFh(i,j) measured relative difference (absolute value) of
 the mean preparation times of tasks of the j-th
 task type to the required mean preparation time;
 this term refers to the tasks submitted by users
 of the i-th type, 4.2.3

DIFFq(i,l) measured relative difference (absolute value) of
 the relative chain frequency of chains of the l-th
 chain type to the required relative chain
 frequency; this term refers to the chains
 submitted by users of the i-th type, 4.2.2

DIFFs(i,j) measured relative difference (absolute value) of
 the standard deviation of the mean preparation
 times of tasks of the j-th task type to the
 required standard deviation; this term refers to
 the tasks submitted by users of
 the i-th type, 4.2.4

E timely throughput vector, 5.1, 5.4.1

e same as e(j) but index j omitted for
 shortness, 5.4.2

E(j) timely throughput of the j-th task type,
 5.1, 5.4.1

e(j) total number of timely tasks of the j-th task type
 submitted during the rating interval, 5.4.1, 5.4.2

E0 timely throughput vector of the reference
 system IP0 for software run time efficiency
 measurement, 10.3.2

E0(j) timely throughput of the j-th task type of the
 reference system IP0 for software run time
 efficiency measurement, 10.3.2

E1 timely throughput vector of the system IP1 the
 software run time efficiency of which is
 to be measured, 10.3.2

E1(j) timely throughput of the j-th task type of the
 system IP1 the software run time efficiency of
 which is to be measured, 10.3.2

 194

Eind(j) timely throughput of the j-th task type in the
 individual rating interval, 6.2.2.3

eind(j) total number of timely tasks of the j-th task type
 submitted during the individual rating
 interval, 6.2.2.3

Eind(v,j) timely throughput of the v-th user with respect to
 tasks of the j-th task type in his individual
 rating interval, 6.5.3

eind(v,j) total number of timely tasks of the j-th task type
 submitted by the v-th user during his individual
 rating interval, 6.5.3

ERef reference vector of timely throughput, 7.2, 7.3.2

ERef(j) reference value of timely throughput of tasks of
 the j-th task type, 7.2

f(l,k) task type of the k-th task in a chain of the
 l-th type, 7.3.2

FP(j) function point value of the j-th task
 type, 14.12.3

gT(k) time class limit of the k-th time class of a
 timeliness function, 2.5, 5.4.2

h(i,j) Preparation time mean value of the tasks submitted
 by a user of the i-th type before submitting a
 task of the j-th task type, 2.7.6

hmeas(i,j) mean value of measured preparation times of tasks
 of the j-th type; this term refers to the tasks
 submitted by all users of the i-th type, 4.2.3

hx random variable of preparation time of tasks of the
 x-th task type, 3.1

Imaxuser software run time efficiency value related to the
 number of timely served users, 10.3.3

IME(j) software run time efficiency value related to mean
 execution time of the j-th task type, 10.3.2

ITH(j) software run time efficiency value related to
 throughput of the j-th task type, 10.3.2

ITI(j) software run time efficiency value related to
 timeliness of the j-th task type, 10.3.2

 195

LChain(l) length (number of tasks) of the l-th
 chain type, 7.3.2, 11.1

M task mode, 2.3

M(j) task mode of the j-th task type, 7.3.2

m total number of task types, 2.3, 2.6

M*(i) an intermediate term of the "beta-formula", 7.3.2

mm(N) mean value of N samples (general), 4.2.5

N total number of samples taken from a random
 changing variable, 4.2.5

n total number of user types, 2.6

NGCD greatest common divisor, 8.2

Nmax maximum number of timely served users, 8.1

Nmax0 maximum number of timely served users of the
 reference system IP0 for software run time
 efficiency measurement, 10.3.3

Nmax1 maximum number of timely served users of the
 system IP1 the when measuring the software run
 time efficiency, 10.3.3

Ntot total number of users, 2.6

Nuser(i) total number of users of the i-th user type, 2.6

P system performance, 5.1

p total number of timeliness functions, 2.3, 2.6

P0 Performance of the reference system IP0 for
 software run time efficiency
 measurement, 10.3.1,.10.3.2

P1 Performance of the system IP1 when measuring the
 software run time efficiency, 10.3.1,.10.3.2

PRef reference performance, 7.2

q(i,l) relative frequency of using the l-th chain type by
 an user of the i-th user type, 2.7.5

 196

qmeas(i,l) measured relative frequency of chains of the
 l-th type; this term refers to the chains
 submitted by all users of the i-th type, 4.2.2

REP replication factor, 11.3.1

REPmax maximum value of the replication factor of a single
 user system for serving the user timely, 14.3

RME mean execution time rating vector, 7.5

RME(j) mean execution time rating value of the j-th
 task type, 7.5

rT(k) relative time class frequency of the k-th
 time class of a timeliness function, 2.5, 5.4.2

RTH throughput rating vector, 7.4

RTH(j) throughput rating value of the j-th task type, 7.4

RTI timeliness rating vector, 7.6

RTI(j) timeliness rating value of the j-th task type, 7.6

s(i,j) preparation time standard deviation of tasks of an
 user of the i-th type with respect of submitted
 tasks of the j-th task type, 2.7.7

sm(N) standard deviation of N samples (general), 4.2.5

smeas(i,j) standard deviation of measured preparation times
 of tasks of the j-th type; this term refers to the
 tasks submitted by all users of the
 i-th type, 4.2.4

sumET(j) sum of all execution times of tasks of the j-th
 task type, 6.5.2

t0 begin of the stabilization phase, 3.3, 9.1

t1 begin of the rating interval, 3.3, 9.1

t1ind same as t1ind(v) but index v omitted for
 simplicity, 6.2.1, 9.1.5.2

t1ind(v) begin of the individual rating interval of the
 v-th user, 6.5.1

t2 end of the rating interval, 3.3, 9.1

 197

t2ind same as t2ind(v) but index v omitted for
 simplicity, 6.2.1, 9.1.5.2

t2ind(v) end of the individual rating interval of the
 v-th user, 6.5.1

t3 end of the supplementary run, 3.3, 9.1

t3ind end of the supplementary run after the individual
 rating interval, 6.2.3, 9.1.5.2

t4 end of the supplementary run in case of using
 individual rating intervals, 6.2.3, 9.1.5.2

tET(j,x) execution time of the x-th task of the j-th
 task type, 5.3

tETind(v,j,x) execution time of the x-th task of the j-th
 task type in the individual logfile of
 the v-th user, 6.5.2

TFi i-th timeliness function, 2.3, 2.7.3

TME mean execution time vector, 5.1, 5.3

TME(j) mean execution time of the j-th task type, 5.1, 5.3

TME0 mean execution time vector of the reference
 system IP0 for software run time
 efficiency measurement, 10.3.2

TME0(j) mean execution time of the j-th task type of the
 reference system IP0 for software run time
 efficiency measurement, 10.3.2

TME1 mean execution time vector of the system IP1 when
 measuring the software run time efficiency, 10.3.2

TME1(j) mean execution time of the j-th task type of the
 system IP1 when measuring the software run time
 efficiency, 10.3.2

TMR mean duration of the individual rating intervals
 of all users, 6.2.4

TR duration of the rating interval, 5.2

TRef reference vector of mean execution times, 7.2, 7.3.1

 198

TRef(j) reference mean value of execution time of the
 j-th task type, 7.2, 7.3.1

TRind duration of the individual rating interval, 6.2.1

TRind(v) duration of the individual rating interval of the
 v-th user, 6.5.1

TSind duration of the individual supplementary run after
 the individual rating interval, 6.2.3

TTj j-th task type, 2.3

u total number of chain types, 2.4, 2.6

v current user number, 6.5.1

var(N) variance (i.e. the square of the standard
 deviation) of N samples, 4.3.2

w total number of activity types, 2.3, 2.6

xi i-th sample of a random changing variable, 4.2.5

xME-lower lower bandwidth value for extended ISO type
 mean execution time rating, 7.7.2

xME-upper upper bandwidth value for extended ISO type
 mean execution time rating, 7.7.2

xTH-lower lower bandwidth value for extended ISO type
 throughput rating, 7.7.2

xTH-upper upper bandwidth value for extended ISO type
 throughput rating, 7.7.2

xTI-lower lower bandwidth value for extended ISO type
 timeliness rating, 7.7.2

Y total number of generated preparation times
 (urn method), 6.3.3

z total number of time classes of a
 timeliness function, 2.5

∆ preparation time step (urn method), 6.3.3

■ end of note (general)

 199

Index
(Item - corresponding section(s))

A
accepted measurement error - 4.3.2, 8.4, 9.5
activated function points - 14.12.2
activity - 2.3
activity type - 2.3
activity type definition - 2.7.1
advanced workload parameters - 2.9
assessing costs (of a measurement project) - 13.3
audit - 13.10, 1.6

B
basic parameters (of a workload) - 2.6
basic workload - 8.2
batch benchmark -14.8.3.1, 14.8.3.2
batch job - 3.2
batch mode - 2.3, 11.5.1.1, 11.5.2.1, Section 2.6 in file
 CD/Supplement-to-ISO14756.pdf
benchmark - 1.1, 1.6
black box 1.3

C
chain - 2.4
chain type - 2.4
chain type definition - 2.7.4
check (of correct working of the RTE) - 4.2
check (of correct working of the SUT) - 4.1
check (of statistical significance) - 4.3
completion (of an ordered activity) - 2.3, 3.4
component performance - 1.2, 14.10
computational result - 2.8
confidence coefficient - 2.9.3, 4.3.2
confidence interval - 2.9.3, 4.3.2
conversion (of non ISO-type workloads) - 14.8
conversion procedure (for non ISO-type workloads) - 14.8.2
CPU utilisation 1.2
cycle (Urn Method) - 6.3.2.1
cycle index (program loop) - Sections1.1 to 1.5 and 2.1 to 2.5 in file
 in CD/Supplement-to-ISO14756.pdf
D
data warehouse workload - 14.8.3.6
Debit-Credit Test – 14.8.3.9
dialog mode - 2.3, 11.5.1.1, 11.5.2.1, Section 2.6 in file
 CD/Supplement-to-ISO14756.pdf
distributed RTE - 14.5
dynamic check (of computational results) - 4.4
dynamic task generation - 3.2

 200

E
efficiency (of software run time) - 10.2
ERP (enterprise resource planning) workload - 14.8.3.7
executed instructions (number of) - 1.2
execution time (response time) - 1.6, 2.3, 3.4
execution time (response time) requirement – 1.6, 2.3, 2.5
external performance value 1.2
external task result - 3.4, 14.4

F
function point - 14.12.1
function point consumption - 14.12.2
function point measurement - 14.12
feedback - 2.1

G
goal of a measurement project - 13.1
greatest common divisor - 8.2, 12.5

H
hidden batch job - 14.4
hierarchical model (of an IP system) - 10.1
high level benchmark - 1.6

I
increment of user numbers - 8.2
individual rating interval - 6.1
individual rating interval (begin of) - 6.2.1
individual rating interval (end of) - 6.2.1
information processing system - 1.1
input variation - 2.7.1, 2.8
interactive job - 3.2
interactive mode - 2.3, 11.5.1.1, 11.5.2.1, Section2.6 in file
 CD/Supplement-to-ISO14756.pdf
internal performance value 1.2
internal task result - 3.4, 14.4
intranet workload - 14.8.3.4, 14.8.3.5
ISO workload data model - 2.2
ISO workloads - Chapter 11
ISO-type workload - 2.1
ISO-type workload definition - 2.2

J
job queue 1.2

K
KS-Web workload – 14.8.3.5

L
length of a task chain type - 2.2, 2.4, 2.7.4
life cycle of a workload - 14.6

 201

logfile - 3.1, 3.4
look-ahead transformation 3.2

M
management (of an ISO measurement project) - Chapter 13
maximum number of timely served users - 8.1
mean execution time of j-th task type - 5.1, 5.3, 6.2.2.2
mean execution time rating - 7.5
mean execution time rating value - 7.5
mean execution time rating vector - 7.5
mean execution time vector - 5.1, 5.3
mean value - 4.2.5, 4.3.4
measure of performance - 5.1, 8.1
measure of software run time efficiency - 10.3.2, 10.3.3
measurement error - 4.3.2, 8.4, 9.5
measurement method (of computer performance) 1.4
measurement of component performance - 1.2, 14.10
measurement of system performance - 1.2, 14.10
measurement operator's protocol - 9.4.1
measurement report - 9.3
measurement result file (logfile) - 3.4
measurement series - 8.1, 10.3.3, 10.4.1.3, 10.4.2.3, 14.3
migration of an ISO-type workload - 11.4, 11.5, 12.11
minimum increment of user numbers - 8.2
modelling method 1.4
monolithic benchmark - 1.6, 14.11.1, 14.11.2
multi-processor - 1.1
multiprogramming 1.2
multiprogramming factor 1.2
multi-user - 1.1

N
NOWAIT mode - 2.3
number (total) of tasks of the j-th task type - 5.2
number (total)of timely executed j-type tasks - 5.4.1, 5.4.2

O
observation period - 3.3
online transaction processing - 2.1, 11.3.4
organisation of an ISO measurement project - Chapter 13
overall rating - 7.7
overlap (of individual rating intervals) - 6.2.4

P
performance - 1.1, 5.1
prediction method 1.4
pregenerated task list - 3.2, 6.3.2
preparation time (think time) - 2.3
preparation time mean value - 2.7.6
preparation time standard deviation - 2.7.7
project schedule - 13.4

 202

R
random generation methods - 3.6
rating (of computer performance) 1.5, Chapter 7
rating interval - 3.3
rating interval (duration of) - 5.2
rating interval (estimation of the magnitude) - 12.7
ready for run benchmark 1.6
real workload - 14.1
reference environment - 10.2
reference IP system - 10.3.1
reference mean execution time - 7.2, 7.3.1
reference performance - 7.1
reference software - 10.2, 10.3
reference throughput - 7.2, 7.3.2
relative chain frequency - 2.7.5
relative confidence interval - 2.9.3
reliability - 1.1, 14.7
remote terminal emulator 1.6, 3.1
replication factor - 8.1, 11.3
reproducibility of measured results - 9.5
response time (execution time) - 1.6, 2.3, 3.4
response time (execution time) requirement - 1.6, 2.3, 2.5
responsibilities (of persons involved in a project) - 13.2
RI part of the logfile - 3.4, 3.5
run time efficiency - 1.6, 10.2

S
safe keeping period - 9.4.3
sample user - 14.2
sequential test - 2.9.3, 4.3.2, 4.3.3
simulation method 1.4
single-user system - 14.3
software efficiency term - 10.3.2, 10.3.3
software efficiency value (related to a task type) - 10.3.2
software efficiency value (related to Nmax) - 10.3.3
software run time efficiency 10.2
SPECweb99 test – 14.8.3.4
SR part of the logfile - 3.4, 3.5
stabilisation phase - 3.3
standard deviation - 4.2.5, 4.3.4
statistical significance - 2.9.3, 4.3
storage utilisation 1.2
supplementary run - 3.3
system performance - 1.2, 5.1
system under test - 1.6

T
task - 2.2, 2.3
task chain - 2.2, 2.4
task chain type - 2.2, 2.4

 203

task completion - 3.4
task list - 3.1
task mode - 2.3
task result - 3.4
task submission - 3.4
task type - 2.2, 2.3
task type definition - 2.7.2
test bed (performance measurement) - 9.1
test bed (SW run time efficiency) - 10.1, 10.3.1, 10.4.1.1, 10.4.2.1
theoretical reference machine - 7.2
think time (preparation time) - 2.3
think time (preparation time) mean value - 2.7.6
think time (preparation time) standard deviation - 2.7.7
threshold - 2.5
throughput of j-th task type - 5.1
throughput rating - 7.4
throughput rating value - 7.4
throughput rating vector - 7.4
throughput vector - 5.1, 5.2
time class - 2.5
time class limit - 2.5
timeliness function - 2.3, 2.5
timeliness function definition - 2.7.3
timeliness rating - 7.6
timeliness rating value - 7.6
timeliness rating vector - 7.6
timely reference throughput - 7.2
timely throughput of j-th task type - 5.1, 5.4.1
timely throughput vector - 5.1, 5.4.3
transaction (task type) - 14.12

U
urn method - Chapter 6
user behaviour parameter - 2.7
user community - 2.1
user entirety - 2.2, 1.5
user interface 1.3
user type - 2.6

V
validation - Chapter 4
variance - 4.3.2, 4.3.4
view of the workload (interface) - 2.1
view of the workload (system internal) - 2.1
view of the workload (user-oriented) - 2.1

W
WAIT mode - 2.3
workload - 1.6, 2.1, 2.2
workload data model - 1.6, 2.2
workload parameter set - 2.10

 204

X

Y

Z

	Preface
	Contents
	1 General basics
	1.1 Computer preformance evaluation and Benchmarking
	1.2 System performance to component performance
	1.3 ISO scope system performance
	1.4 Measurement of computer performance compared to predicition methods
	1.5 What is rating of performance and why it is needed?
	1.6 Basic principles and philosophy of ISO/IEC 14756
	1.7 Overview of ISO/IEC 14756
	1.8 Exercises

	2 The ISO workload
	2.1 The view of the ISO workload
	2.2 Basic ideas of the ISO workload description method
	2.3 Explanation of the terms "activity", "activity type", "task" and "task type"
	2.4 Explanation of the terms "chain" and "chain type"
	2.5 Explanation of the timeless function
	2.6 The basic parameters of an ISO-type workload
	2.7 The user behaviour parameters
	2.7.1 The activity types values
	2.7.2 The task type values
	2.7.3 List of timeliness function values
	2.7.4 List of chain type definitions
	2.7.5 The relative frequencies
	2.7.6 Preparation time mean values
	2.7.7 Preparation time standard deviation values

	2.8 Application programs, their data and computational results
	2.9 The advanced parameters of an ISO-type workload
	2.9.1 Computational results
	2.9.2 Precise working of the RTE
	2.9.3 Statistical significance
	2.10 Short summary of the contents of an ISO workload
	2.11 Exercises

	3. The measurement experiment
	3.1 Principles of operation of the ISO-type user emulator (RTE)
	3.2 Dynamic task generation versus pregenrated task lists
	3.3 The three phases of a measurement run
	3.4 The logfile (measurement result file)
	3.5 Storing the computational results
	3.6 Some random generation methods
	3.6.1 Generation of random chain type numbers
	3.6.2 Generation of randon preparation times
	3.6.3 A practical problem with finite random sequences

	3.7 Exercises

	4 Validation of the measurement results
	4.1 Validation of the computational results of the SUT
	4.2 Validation of the correctness of the working of the RTE
	4.2.1 Three criteria
	4.2.2 The first criterion: Checking the relative chain frequencies
	4.2.3 The second criterion: Checking the preparation mean times
	4.2.4 The third criterion: Chekcing the standard deciaitons of the preparation times
	4.2.5 Remarks

	4.3 Checking the statistical significance of the measurements results
	4.3.1 Rationale for this check
	4.3.2 The test
	4.3.3 Applicaiton of the sequential test
	4.3.4 Fast computation of mean value and variance

	4.4 Summary of the validaiton procedure
	4.5 Exercises

	5 Computing the ISO performance values from the measurement result file (logfile)
	5.1 Overview of the ISO performance values from the measurement result file (logfike)
	5.2 The "total throughput vector" B
	5.3 The "mean execution time vector" T ME
	5.4 The "timelythroughput vector" E
	5.4.1 The principle of E
	5.4.2 Computing e(j)
	5.4.3 The "timely throughout vector" E

	5.5 Exercises

	6 The Urn Method
	6.1 General
	6.2 Introduciotn to the concept of individual intervals
	6.2.1 Defining the individual rating intervals
	6.2.2 Modifying the computation of B (total throughout)
	6.2.3 Overlapping of individual RIs

	6.3 Explaining the cocept of "urns"
	6.3.1 Toleration of the Urn Method by ISO/IEC 14756
	6.3.2 The urns
	6.3.3 Generation of a set of preparation time values for filling a preparation time urn

	6.4 Experiences fron applying the Urn Method
	6.5 Formal and detailed description of the modifications for computing the performance values
	6.5.1 Total throughout vector B
	6.5.2 Mean execution time vector T ME
	6.5.3 Tinmely throughout vector E
	6.5.4 Explanations

	6.6 Exercises

	7 Rating the measured performance values
	7.1 The principle of the ISO rating
	7.2 The ISO theoretical reference machine
	7.3 Computation of T Ref
	7.3.1 Computation of T Ref
	7.3.2 Computation of B Ref

	7.4 Throughout rating
	7.5 Rating the mean execution times
	7.6 Timeliness rating
	7.7 Overall rating
	7.7.1 General ISO rule of rating
	7.7.2 Extended ISO rating rule

	7.8 Exercises

	8 The performance measure N max
	8.1 Maximum number of timely served users (N max)
	8.2 Incrementing the number of users
	8.3 Measurement series
	8.4 Acceptbale tolerances of N max
	8.5 Experiences from various measurement series
	8.6 Exercises

	9 Summary of the ISO system performance measurement method
	9.1 The steps of an ISO-type measurement run
	9.1.1 Step 1: Specification of the workload
	9.1.2 Step 2: Installation of the applications on the SUT
	9.1.3 Step 3: Connecting the SUT to the RTE
	9.1.4 Step 4: Loading the RTE with the WPS
	9.1.5 Step 5: The measurement run
	9.1.6 Step 6: Checking the correct working of the SUT
	9.1.7 Step 7: Checking the correct working of the RTE
	9.1.8 Step 8: Checking the statistical significance and the RI overlap
	9.1.9 Step 9: Calculating the performace values
	9.1.10 Step 10: Calculating the rating values

	9.2 Computing the measurements results
	9.2.1 Calculation of the performace values
	9.2.2 Calculation of the rating values

	9.3 The measurement report
	9.3.1 Principles
	9.3.2 Suggested contents of the measurement report

	9.4 Recommendation for the documentation of a measurement run
	9.4.1 Measurement operator's protocol
	9.4.2 Archiving the measurement files
	9.4.3 Safekeeping period

	9.5 Reproducibility of measurement results
	9.6 Exercises

	10 Measurement of software (run time) efficiency
	10.1 A hierarchical model for information processing systems
	10.2 The reference environment and the term run time efficiency
	10.3 The measurement procedure and measures of software run time efficiency
	10.3.1 The measurement procedure
	10.3.2 Run time terms related to ask types
	10.3.3 A software run time efficiency term realted to the performance measure N max
	10.3.4 comparison of the two methods

	10.4 Examples
	10.4.1 Example 1: Application software efficiency
	10.4.2 Example 2: System software efficiency

	10.5 Exercises

	11 The ISO workloads
	11.1 Purpose of the workloads and format
	11.2 The Simple Workloads
	11.2.1 General
	11.2.2 SIMPLOAD2
	11.2.4 SIMPLOAD3
	11.2.3 SIMPLOAD1

	11.3 The Computer Centre Workloads
	11.3.1 General
	11.3.2 COMPCENTER1
	11.3.3 COMPCENTER2
	11.3.4 COMPCENTER3

	11.4 Migration of ISO wokrloads to other operating systems
	11.5 Important details for ISO workload migration
	11.5.1 Workload COMPCENTER1
	11.5.2 Workload COMPCENTER2
	11.5.3 COMPCENTER3

	11.6 Exercises

	12 Creating an individual ISO-type workload
	12.1 Activity and their representatives
	12.2 Timeliness
	12.3 Task types
	12.4 Chain types
	12.5 Chain probabilities and user types
	12.6 Preparation times ("think times")
	12.7 The WPS
	12.7.1 The Recording the values of the WPS in a text file
	12.7.2 Recursive improvement of the WPS

	12.8 The application software
	12.9 The advanced parameters
	12.10 Preparation
	12.11 Migration of an individual ISO-type workload to a different operating system
	12.12 Exercises

	13 Organisation and management of an ISO-type measurement project
	13.1 Deciding on the goals of the measurement project
	13.1.1 List of performance measurement goals

	13.2 Defining the reponsibilities
	13.3 Assessing the costs of the project
	13.4 The project schedule
	13.5 Making the workload avialable
	13.6 Making the SUT operational and tuning it
	13.7 Choosing an ISO-type RTe having sufficient performance
	13.8 Performing the measurement
	13.9 Computation of the performance values and rating vlaues
	13.10 Audit

	14 Miscellaneous aspects
	14.1 Measurement using a real workload
	14.2 Measurement uding automated sample users
	14.3 Measuring singl-user systems
	14.4 Hidden batch jobs in online transaction processing
	14.5 A distributed RTE
	14.6 Life cycle of ISO-type workloads
	14.6.1 Workload definition and documentation
	14.6.2 The RTE
	14.6.3 Type, architecture, manufacturer of the SUT
	14.6.4 Power of the SUT
	14.6.5 Applications contained in the workload
	14.6.6 Final remarks

	14.7 Reliability aspects
	14.8 Conversion of non ISO-type workloads to the ISO data model
	14.8.1 Candidates for conversion
	14.8.2 The conversion procedure
	14.8.3 Example of conversions and sketches of some individual workloads

	14.9 Example structure of an ISO-type measurement system
	14.9.1 The example structure
	14.9.2 Short descriptions ot the modules
	14.9.3 Some comments on the actual implementation of DEMO

	14.10 Applicability of the ISO method for measuring component performance
	14.11 Short comparison of some other methods with the ISO method
	14.11.1 Incomplete lists of commonly used system performance measurement systems
	14.11.2 Short comparison

	14.12 Applying ISO/IEC 14756 to Function Point Measurement
	14.12.1 Overview
	14.12.2 Activated Function Points (AFP)
	14.12.3 Using AFP with ISO/IEC 14756
	14.12.4 Limitations
	14.12.5 Opportunities

	Appendix
	References
	Abbreviations
	Symbols
	Index

