
Audit Report
dTRINITY dusd
October 2024

Repository https://github.com/dtrinity/solidity-contracts-preview/tree/main/contracts/dusd

Commit e21bdc5083e1c9a56019b13a51e7e8bc0145aac8

Audited by © cyberscope

dTRINITY dusd Audit 1

Table of Contents
Table of Contents 1
Risk Classification 3
Review 4

Audit Updates 4
Source Files 4

Overview 5
AmoManager Contract Functionality 5
AmoVault Contract Functionality 5
CollateralVault Contract Functionality 6
Issuer Contract Functionality 6
OracleAggregator Contract Functionality 7
OracleAware Contract Functionality 7
Redeemer Contract Functionality 7
UniV3AmoVault Contract Functionality 8

Findings Breakdown 9
Diagnostics 10

MCWRA - Missing Collateral Withdrawal Role Assignment 11
Description 12
Recommendation 14

CCR - Contract Centralization Risk 15
Description 15
Recommendation 16

IRA - Inconsistent Role Assignment 17
Description 17
Recommendation 17

IVDL - Incorrect Vault Disabling Logic 18
Description 18
Recommendation 18

MDAC - Missing Deposit Access Control 19
Description 19
Recommendation 20

MEM - Missing Error Messages 21
Description 21
Recommendation 21

RC - Redundant Check 22
Description 22
Recommendation 22

RCAS - Redundant Collateral Address Storage 23
Description 23

dTRINITY dusd Audit 2

Recommendation 23
UPAF - Unnecessary Public Approval Function 24

Description 24
Recommendation 24

URS - Unnecessary Return Statements 25
Description 25
Recommendation 25

L04 - Conformance to Solidity Naming Conventions 26
Description 26
Recommendation 27

L13 - Divide before Multiply Operation 28
Description 28
Recommendation 28

L15 - Local Scope Variable Shadowing 29
Description 29
Recommendation 29

L19 - Stable Compiler Version 30
Description 30
Recommendation 30

Functions Analysis 31
Summary 38
Disclaimer 39
About Cyberscope 40

dTRINITY dusd Audit 3

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

dTRINITY dusd Audit 4

Review

Repository https://github.com/dtrinity/solidity-contracts-preview/tree/main/

contracts/dusd

Commit e21bdc5083e1c9a56019b13a51e7e8bc0145aac8

Audit Updates

Initial Audit 21 Oct 2024

Source Files

Filename SHA256

UniV3AmoVault.sol 85e53e391bb5ac8dadf9d63220071dd610

dd85c922b280f35f0e7fdcc53d23d9

Redeemer.sol 819e7d00f2f3ae5c3dc4ad4fe6f6efb94382

579826180a7064df4a6764ddf4b3

OracleAware.sol 953595cf6b227c08198e26794d5a171f651

83c3c3a7412233ae73e4a81fccf5c

OracleAggregator.sol 8668d7358e9f8cc22c55d6de5cd3584b31

63bdd76b0c6f64acca5da68447cdaf

Issuer.sol 60e5486878d797829cf6074f175a26bff713

ba9ea7eb886946906b0d7559f128

CollateralVault.sol cb20e4edca2b2b2b00553922c19c06de59

52384afcdb4f11a22ebc8757e91bc2

AmoVault.sol c36dacee732a2df5ebbd1d9fa0b46172be

4ac430d4d21ae6fa9a7b413843baf9

AmoManager.sol ce117d49aabbdaf1037b58094bf053a5e0

be3a7df20f5bff68dd990a79ff0727

dTRINITY dusd Audit 5

Overview

AmoManager Contract Functionality

The AmoManager contract is designed to manage the allocation and deallocation of dUSD

tokens to various AMO (Algorithmic Market Operations) vaults. It maintains a set of active

AMO vaults and ensures that tokens can only be allocated to and deallocated from

authorized vaults. The contract enforces access control for allocating and deallocating

dUSD, requiring specific roles to execute these operations. Additionally, it tracks the total

allocated supply of dUSD and provides functions to calculate the collateral value of active

AMO vaults. The contract also allows administrators to enable or disable AMO vaults, burn

dUSD to reduce the AMO supply, and remove vaults from the active list. It emits events for

vault changes and token movements to enhance transparency.

AmoVault Contract Functionality

The AmoVault contract is an abstract contract that serves as a vault for managing dUSD

and collateral tokens in coordination with the AmoManager contract. It allows for the

withdrawal of collateral tokens by addresses with the COLLATERAL_WITHDRAWER_ROLE,

as well as the recovery of accidentally sent ERC20 tokens and ETH through the

RECOVERER_ROLE. The contract includes mechanisms to approve the AmoManager for

spending dUSD on its behalf and enforces access control for various functions to ensure

that only authorized roles can execute sensitive operations. It integrates a reentrancy guard

to protect against reentrancy attacks and provides functions to check and manage

collateral assets.

dTRINITY dusd Audit 6

CollateralVault Contract Functionality

The CollateralVault contract is responsible for managing the deposit, withdrawal, and

exchange of collateral assets. It allows for the deposit of collateral tokens into the vault by

authorized users and provides functionality for withdrawing collateral with the appropriate

access control. The contract uses a price oracle to determine the value of collateral assets

and supports the exchange of collateral between different tokens while maintaining equal

value. The contract also implements access control mechanisms to ensure that only

authorized roles can manage collateral, withdraw assets, and execute strategy-related

functions. Additionally, it maintains a list of supported collateral assets, allowing new assets

to be added or disallowed by a designated collateral manager.

Issuer Contract Functionality

The Issuer contract manages the issuance of dUSD tokens by accepting collateral deposits

from users or third parties. It interacts with a price oracle to ensure the correct conversion of

collateral into dUSD based on market value, and it handles the minting of dUSD tokens to

users who provide collateral. The contract also has the ability to issue dUSD using excess

collateral in the system and increase the AMO supply by minting tokens to an AmoManager.

The contract includes access control for minting, issuing tokens, and managing AMO

supply, with designated roles for specific functions. Additionally, it tracks the circulating

supply of dUSD and the total value of collateral in the system.

dTRINITY dusd Audit 7

OracleAggregator Contract Functionality

The OracleAggregator contract aggregates price data from multiple oracles for various

assets and applies thresholding where required. It uses a mapping to associate each asset

with a designated oracle and an additional mapping to determine whether thresholding

should be applied to the price data for a specific asset. The contract allows the setting and

updating of oracles and threshold values, which are managed by a role-based access

control system. The contract is compatible with protocols such as Aave through its

implementation of the IPriceOracleGetter interface, enabling it to return asset prices in USD

with a defined number of decimal places. When thresholding is enabled for an asset, if the

price exceeds a certain threshold, the price is capped to a fixed value. This design ensures

that the contract provides reliable and consistent price data while protecting against

extreme fluctuations in asset prices.

OracleAware Contract Functionality

The OracleAware contract is an abstract base contract designed to provide oracle

functionality to other contracts. It maintains a reference to an external price oracle, which is

used for fetching asset price data. The contract allows the oracle to be updated by

accounts with the DEFAULT_ADMIN_ROLE, enabling flexibility in choosing or switching

oracles as needed. The contract emits events whenever the oracle is updated, ensuring

transparency. It provides an essential foundation for contracts that need reliable price data

for collateral valuation or other financial calculations.

Redeemer Contract Functionality

The Redeemer contract enables the redemption of dUSD tokens in exchange for collateral

from the associated CollateralVault. Users can redeem their dUSD tokens for a specified

amount of collateral, subject to slippage protection. The contract allows redemptions from

the caller's own balance or on behalf of another address. The redeemed dUSD tokens are

transferred to the contract, burned, and the equivalent value of collateral is calculated and

withdrawn from the vault. The contract uses an external price oracle to ensure accurate

conversion between dUSD and collateral assets. The Redeemer contract is governed by

access control roles, ensuring only authorized accounts can initiate redemptions and

manage collateral settings.

dTRINITY dusd Audit 8

UniV3AmoVault Contract Functionality

The UniV3AmoVault contract extends the functionality of the AmoVault contract and

integrates with Uniswap V3 to provide liquidity management for the dUSD token. This

contract enables adding and removing liquidity positions in a Uniswap V3 pool, as well as

conducting swaps through the Uniswap V3 router. The vault tracks liquidity positions and

calculates their value using external price oracles. The contract also allows collecting fees

from Uniswap positions and managing collateral, which is used to maintain the value of the

dUSD token. The contract ensures that only authorized traders can perform liquidity

operations through access control roles.

dTRINITY dusd Audit 9

Findings Breakdown

⬤ Critical 1

⬤ Medium 0

⬤ Minor / Informative 13

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 1 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 13 0 0 0

dTRINITY dusd Audit 10

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ MCWRA Missing Collateral Withdrawal Role Assignment Unresolved

⬤ CCR Contract Centralization Risk Unresolved

⬤ IRA Inconsistent Role Assignment Unresolved

⬤ IVDL Incorrect Vault Disabling Logic Unresolved

⬤ MDAC Missing Deposit Access Control Unresolved

⬤ MEM Missing Error Messages Unresolved

⬤ RC Redundant Check Unresolved

⬤ RCAS Redundant Collateral Address Storage Unresolved

⬤ UPAF Unnecessary Public Approval Function Unresolved

⬤ URS Unnecessary Return Statements Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L13 Divide before Multiply Operation Unresolved

⬤ L15 Local Scope Variable Shadowing Unresolved

⬤ L19 Stable Compiler Version Unresolved

dTRINITY dusd Audit 11

Severity Code Description Status

⬤ MCWRA Missing Collateral Withdrawal Role Assignment Unresolved

⬤ CCR Contract Centralization Risk Unresolved

⬤ IRA Inconsistent Role Assignment Unresolved

⬤ IVDL Incorrect Vault Disabling Logic Unresolved

⬤ MDAC Missing Deposit Access Control Unresolved

⬤ MEM Missing Error Messages Unresolved

⬤ UPAF Unnecessary Public Approval Function Unresolved

⬤ URS Unnecessary Return Statements Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L13 Divide before Multiply Operation Unresolved

⬤ L15 Local Scope Variable Shadowing Unresolved

⬤ L19 Stable Compiler Version Unresolved

MCWRA - Missing Collateral Withdrawal Role Assignment

Criticality Critical

Location Redeemer.sol#L52,74,98
CollateralVault.sol#L113

dTRINITY dusd Audit 12

Status Unresolved

Description

The redeemFrom function in the Redeemer contract calls the withdrawFrom

function in the CollateralVault contract to withdraw collateral. However, the

withdrawFrom function in CollateralVault is protected by the

COLLATERAL_WITHDRAWER_ROLE access control. This means that for the

redeemFrom function to successfully withdraw collateral, the Redeemer contract must

have the COLLATERAL_WITHDRAWER_ROLE assigned. Without this role being granted,

the redeemFrom function will fail when attempting to withdraw collateral, which could

disrupt the redemption process.

dTRINITY dusd Audit 13

function redeem(
uint256 dusdAmount,
address collateralAsset,
uint256 minCollateral

) external onlyRole(REDEMPTION_MANAGER_ROLE) {
_redeem(

msg.sender,
msg.sender,
dusdAmount,
collateralAsset,
minCollateral

);
}

function _redeem(
address withdrawer,
address receiver,
uint256 dusdAmount,
address collateralAsset,
uint256 minCollateral

) internal {
// Transfer dUSD from withdrawer to this contract
require(

dusd.transferFrom(withdrawer, address(this),
dusdAmount),

"dUSD transfer failed"
);

// Burn the dUSD
dusd.burn(dusdAmount);

// Calculate collateral amount
uint256 dusdValue = dusdAmountToUsdValue(dusdAmount);
uint256 collateralAmount =

collateralVault.collateralAmountFromValue(
dusdValue,
collateralAsset

);
require(

collateralAmount >= minCollateral,
"Too much slippage during redemption"

);

// Withdraw collateral from the vault
collateralVault.withdrawFrom(

receiver,
collateralAmount,
collateralAsset

);

dTRINITY dusd Audit 14

// No invariant checks here, since only redemption
manager can redeem,

// and may need to redeem during adverse market
conditions

}

function withdrawFrom(
address withdrawer,
uint256 collateralAmount,
address collateralAsset

) public onlyRole(COLLATERAL_WITHDRAWER_ROLE) {
return _withdraw(withdrawer, collateralAmount,

collateralAsset);
}

Recommendation

It is recommended to ensure that the COLLATERAL_WITHDRAWER_ROLE is granted to

the Redeemer contract, either during the initialization process in the constructor of the

CollateralVault contract. This would allow the redeemFrom function to execute

the collateral withdrawal as intended, ensuring the redemption process can proceed without

access control issues.

dTRINITY dusd Audit 15

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location AmoManager.sol#L149,160,171
AmoVault.sol#L65,86,105
CollateralVault.sol#L100,149,184,293,313
Issuer.sol#L116,201,213
OracleAggregator.sol#L74,95,107
OracleAware.sol#L27
Redeemer.sol#L154
UniV3AmoVault.sol#L110,158,202,245,281

Status Unresolved

Description

The contracts' functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence

on external configuration include Single Point of Control, Vulnerability to Attacks,

Operational Delays, Trust Dependencies, and Decentralization Erosion.

function enableAmoVault(
address amoVault

) public onlyRole(DEFAULT_ADMIN_ROLE) {
require(_amoVaults.add(amoVault), "AMO vault already

enabled");
emit AmoVaultSet(amoVault, true);

}

function disableAmoVault(
address amoVault

) public onlyRole(DEFAULT_ADMIN_ROLE) {
require(_amoVaults.remove(amoVault), "AMO vault not

found");
emit AmoVaultSet(amoVault, false);

}

...

dTRINITY dusd Audit 16

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's

self-sufficiency. It is essential to carefully weigh the trade-offs between external

configuration flexibility and the risks associated with centralization.

dTRINITY dusd Audit 17

IRA - Inconsistent Role Assignment

Criticality Minor / Informative

Location OracleAggregator.sol#L60

Status Unresolved

Description

In the OracleAggregator contract, the constructor uses _grantRole for assigning both

the DEFAULT_ADMIN_ROLE and ORACLE_MANAGER_ROLE to msg.sender .

However, in other contracts within the same codebase, roles are assigned in a more

consistent manner, where _grantRole is used to assign the DEFAULT_ADMIN_ROLE

, and subsequent roles are assigned using the external grantRole function. This

inconsistency can lead to confusion, as it deviates from the standard approach used

throughout the project. Additionally, using grantRole ensures that role assignment

events are emitted, providing better traceability on-chain.

constructor(uint8 _priceDecimals, uint256 _thresholdUsd) {
priceDecimals = _priceDecimals;
priceUnit = 10 ** _priceDecimals;
thresholdUsd = _thresholdUsd;

_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(ORACLE_MANAGER_ROLE, msg.sender);

}

Recommendation

It is recommended to align the role assignment in the OracleAggregator contract

with the pattern used in other contracts. The DEFAULT_ADMIN_ROLE should be

assigned using _grantRole , while subsequent roles, such as

ORACLE_MANAGER_ROLE , should be assigned using grantRole to ensure consistency and

proper event emission across the codebase.

dTRINITY dusd Audit 18

IVDL - Incorrect Vault Disabling Logic

Criticality Minor / Informative

Location AmoManager.sol#L160

Status Unresolved

Description

The disableAmoVault function in the contract is intended to disable an AMO vault,

which suggests that the vault should remain in the set but be marked as inactive. However,

the function currently removes the vault from the _amoVaults set entirely. This causes

the vault to be inaccessible for any future actions, such as reactivating the vault or

deallocating any assets it holds. The function’s current behavior is inconsistent with its

name and description, as it performs a removal operation rather than simply disabling the

vault.

function disableAmoVault(
address amoVault

) public onlyRole(DEFAULT_ADMIN_ROLE) {
require(_amoVaults.remove(amoVault), "AMO vault not

found");
emit AmoVaultSet(amoVault, false);

}

Recommendation

To align with the intended functionality of disabling a vault, the implementation should be

adjusted so that the vault remains in the set but its status is updated to inactive. Consider

introducing a mechanism that tracks whether a vault is active or inactive without removing it

from the list. This would allow administrators to deactivate vaults without removing them

entirely, ensuring that future reactivation or asset management operations are possible.

dTRINITY dusd Audit 19

MDAC - Missing Deposit Access Control

Criticality Minor / Informative

Location CollateralVault.sol#L61,75

Status Unresolved

Description

The depositFrom function in the CollateralVault contract lacks access control,

allowing any external account to call the function and initiate a deposit on behalf of a

depositor. Although the function relies on the ERC20 safeTransferFrom mechanism,

which requires the depositor to grant token allowance to the contract, this alone may not be

sufficient to prevent misuse or unintended calls. Without proper access control,

unauthorized accounts could potentially initiate deposits, leading to unexpected behavior or

security risks.

dTRINITY dusd Audit 20

function depositFrom(
address depositer,
uint256 collateralAmount,
address collateralAsset

) public {
return _deposit(depositer, collateralAmount, collateralAsset);

}

function _deposit(
address depositer,
uint256 collateralAmount,
address collateralAsset

) internal {
// Make sure the collateral is active
require(

_supportedCollaterals.contains(collateralAsset),
"Unsupported collateral"

);

IERC20Metadata(collateralAsset).safeTransferFrom(
depositer,
address(this),
collateralAmount

);
}

Recommendation

It is recommended to implement access control to restrict who can call the depositFrom

function. This ensures that only trusted and authorized roles, such as a collateral manager,

are able to initiate deposits on behalf of other users. This additional layer of security would

prevent abuse and enhance the overall integrity of the system by ensuring that sensitive

operations are only performed by authorized accounts.

dTRINITY dusd Audit 21

MEM - Missing Error Messages

Criticality Minor / Informative

Location AmoManager.sol#L65,94

Status Unresolved

Description

The contract is missing error messages. Specifically, there are no error messages to

accurately reflect the problem, making it difficult to identify and fix the issue. As a result, the

users will not be able to find the root cause of the error.

require(endingAmoSupply == startingAmoSupply)

Recommendation

The team is suggested to provide a descriptive message to the errors. This message can be

used to provide additional context about the error that occurred or to explain why the

contract execution was halted. This can be useful for debugging and for providing more

information to users that interact with the contract.

dTRINITY dusd Audit 22

RC - Redundant Check

Criticality Minor / Informative

Location AmoManager.sol#L112

Status Unresolved

Description

In the totalCollateralValue function, the contract checks whether each vault in the

_amoVaults set is active before calculating its collateral value. This check is redundant

because the vaults that are inactive or removed would already be excluded from the

_amoVaults set due to the behavior of the disableAmoVault and

removeAmoVault functions. Both of these functions ensure that inactive vaults are either

disabled or completely removed from the set, making it unnecessary to recheck their status

during the collateral calculation. This adds unnecessary complexity to the logic and may

result in inefficiencies.

function totalCollateralValue() public view returns (uint256) {
uint256 totalValue = 0;
for (uint256 i = 0; i < _amoVaults.length(); i++) {

address vaultAddress = _amoVaults.at(i);
if (isAmoActive(vaultAddress)) {

IAmoVault vault = IAmoVault(vaultAddress);
totalValue += vault.totalCollateralValue();

}
}
return totalValue;

}

Recommendation

The isAmoActive check should be removed from the totalCollateralValue

function since the vaults in the _amoVaults set are guaranteed to be active. Simplifying

this function will improve code clarity and reduce gas costs by avoiding an unnecessary

condition.

dTRINITY dusd Audit 23

RCAS - Redundant Collateral Address Storage

Criticality Minor / Informative

Location UniV3AmoVault.sol#L140

Status Unresolved

Description

The Position struct in the UniV3AmoVault contract stores the collateral token's

address for each position, even though the collateral token is an immutable state variable.

Since the collateral token address remains constant across all positions, storing this value

in each Position instance is unnecessary and increases storage costs. This redundancy

leads to inefficient use of gas and contract storage.

Position memory newPosition = Position({
tokenId: tokenId,
collateral: address(collateralToken),
liquidity: liquidity,
tickLower: params.tickLower,
tickUpper: params.tickUpper

});

Recommendation

Remove the redundant storage of the collateral token address from the Position

struct. Instead, rely on the immutable collateral token state variable to access the collateral

token's address when needed. This optimization will save storage costs and improve the

overall efficiency of the contract without affecting its functionality.

dTRINITY dusd Audit 24

UPAF - Unnecessary Public Approval Function

Criticality Minor / Informative

Location AmoVault.sol#L76

Status Unresolved

Description

The approveAmoManager function provides maximum approval for the AmoManager

to spend dUSD tokens on behalf of the contract. Since the AmoManager is immutable

and cannot be changed after deployment, there is no need for this function to be callable

multiple times. The approval granted during the contract's construction ensures that the

AmoManager has sufficient permission to transfer dUSD without further interaction.

function approveAmoManager() public
onlyRole(DEFAULT_ADMIN_ROLE) {

dusd.approve(address(amoManager), type(uint256).max);
}

Recommendation

To simplify the contract and reduce the potential for misuse, consider restricting the

approveAmoManager function to the constructor, ensuring that it is only called once

during deployment. Removing the public access to this function ensures that no further

unnecessary approvals can be made, while maintaining the intended functionality of

granting maximum approval to the AmoManager .

dTRINITY dusd Audit 25

URS - Unnecessary Return Statements

Criticality Minor / Informative

Location CollateralVault.sol#L51,66

Status Unresolved

Description

The deposit and depositFrom functions include return statements but do not

return any value. This is misleading, as the use of return suggests that a value or result is

expected, when in fact the functions only call internal logic without any return value.

function deposit(uint256 collateralAmount, address
collateralAsset) public {

return _deposit(msg.sender, collateralAmount,
collateralAsset);

}

function depositFrom(
address depositer,
uint256 collateralAmount,
address collateralAsset

) public {
return _deposit(depositer, collateralAmount,

collateralAsset);
}

Recommendation

It is recommended to remove the unnecessary return statements in these functions to

improve code clarity and maintainability. The absence of a return value should be clear from

the function implementation.

dTRINITY dusd Audit 26

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location Redeemer.sol#L155
OracleAggregator.sol#L96,119,127
Issuer.sol#L202,214

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

address _collateralVault
uint256 _thresholdUsd

function BASE_CURRENCY() external pure returns (address) {
return BASE_CURRENCY_USD;

}

function BASE_CURRENCY_UNIT() external view returns (uint256) {
return priceUnit;

}
address _amoManager

dTRINITY dusd Audit 27

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

dTRINITY dusd Audit 28

L13 - Divide before Multiply Operation

Criticality Minor / Informative

Location CollateralVault.sol#L226,229

Status Unresolved

Description

It is important to be aware of the order of operations when performing arithmetic

calculations. This is especially important when working with large numbers, as the order of

operations can affect the final result of the calculation. Performing divisions before

multiplications may cause loss of prediction.

uint256 fromCollateralValue = (fromCollateralPrice *
fromCollateralAmount) / (10 **

fromCollateralDecimals)
toCollateralAmount =

(fromCollateralValue * (10 **
toCollateralDecimals)) /

toCollateralPrice

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when

performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses

to specify the order of operations. The basic rule is that the multiplications should be prior

to the divisions.

dTRINITY dusd Audit 29

L15 - Local Scope Variable Shadowing

Criticality Minor / Informative

Location Redeemer.sol#L35
Issuer.sol#L41
CollateralVault.sol#L37

Status Unresolved

Description

Local scope variable shadowing occurs when a local variable with the same name as a

variable in an outer scope is declared within a function or code block. When this happens,

the local variable "shadows" the outer variable, meaning that it takes precedence over the

outer variable within the scope in which it is declared.

IPriceOracleGetter oracle

Recommendation

It's important to be aware of shadowing when working with local variables, as it can lead to

confusion and unintended consequences if not used correctly. It's generally a good idea to

choose unique names for local variables to avoid shadowing outer variables and causing

confusion.

dTRINITY dusd Audit 30

L19 - Stable Compiler Version

Criticality Minor / Informative

Location UniV3AmoVault.sol#L2
Redeemer.sol#L2
OracleAware.sol#L2
Issuer.sol#L2
CollateralVault.sol#L2
AmoVault.sol#L2
AmoManager.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.20;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

dTRINITY dusd Audit 31

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

UniV3AmoVault Implementation AmoVault,
OracleAware

Public ✓ AmoVault
OracleAware

totalCollateralValue Public -

mint External ✓ onlyRole

burn External ✓ onlyRole

increaseLiquidity External ✓ onlyRole

decreaseLiquidity External ✓ onlyRole

collectFees Public ✓ onlyRole

swapExactOutputSingle External ✓ onlyRole

swapExactInputSingle External ✓ onlyRole

getPosition Public -

getPositionsCount Public -

getPositionByTokenId Public -

_getPositionValueExcludingDusd Internal

_isCollateral Internal

Redeemer Implementation AccessContr
ol,
Constants,
OracleAware

Public ✓ OracleAware

redeem External ✓ onlyRole

dTRINITY dusd Audit 32

redeemFrom External ✓ onlyRole

_redeem Internal ✓

dusdAmountToUsdValue Public -

setCollateralVault External ✓ onlyRole

OracleAware Implementation AccessContr
ol

Public ✓ -

setOracle Public ✓ onlyRole

OracleAggregat
or

Implementation AccessContr
ol,
IPriceOracle
Getter

Public ✓ -

setOracle External ✓ onlyRole

setThreshold External ✓ onlyRole

setApplyThresholding External ✓ onlyRole

BASE_CURRENCY External -

BASE_CURRENCY_UNIT External -

getAssetPrice External -

getPriceInfo Public -

_getPriceInfo Private

Issuer Implementation AccessContr
ol,
Constants,
OracleAware

Public ✓ OracleAware

dTRINITY dusd Audit 33

issue External ✓ -

issueFrom External ✓ -

issueUsingExcessCollateral External ✓ onlyRole

increaseAmoSupply External ✓ onlyRole

_issue Internal ✓

circulatingDusd Public -

collateralInDusd Public -

usdValueToDusdAmount Public -

setAmoManager External ✓ onlyRole

setCollateralVault External ✓ onlyRole

IUniswapV3Poo
l

Interface IUniswapV3
PoolImmuta
bles,
IUniswapV3
PoolState,
IUniswapV3
PoolDerived
State,
IUniswapV3
PoolActions,
IUniswapV3
PoolOwnerA
ctions,
IUniswapV3
PoolEvents

IPriceOracleGet
ter

Interface

BASE_CURRENCY External -

BASE_CURRENCY_UNIT External -

getAssetPrice External -

IOracleWrapper Interface

dTRINITY dusd Audit 34

getPriceInfo External -

getPriceDecimals External -

IERC20Stablec
oin

Interface IERC20

mint External ✓ -

burn External ✓ -

burnFrom External ✓ -

decimals External -

DexOracleWrap
per

Implementation IOracleWrap
per

Public ✓ -

getPriceInfo External -

getPriceDecimals External -

_calculatePriceDecimals Private

CollateralVault Implementation AccessContr
ol,
OracleAware

Public ✓ OracleAware

deposit Public ✓ -

depositFrom Public ✓ -

_deposit Internal ✓

withdraw Public ✓ onlyRole

withdrawFrom Public ✓ onlyRole

_withdraw Internal ✓

dTRINITY dusd Audit 35

exchangeCollateral Public ✓ onlyRole

exchangeMaxCollateral Public ✓ onlyRole

maxExchangeAmount Public -

totalValue Public -

collateralValueFromAmount Public -

collateralAmountFromValue Public -

allowCollateral Public ✓ onlyRole

disallowCollateral Public ✓ onlyRole

isCollateralSupported Public -

listCollateral Public -

IRecoverable Interface

recoverERC20 External ✓ -

recoverETH External ✓ -

AmoVault Implementation AccessContr
ol,
IRecoverable
, IAmoVault,
ReentrancyG
uard

Public ✓ -

withdrawCollateral External ✓ onlyRole
nonReentrant

approveAmoManager Public ✓ onlyRole

recoverERC20 External ✓ onlyRole
nonReentrant

recoverETH External ✓ onlyRole

_isCollateral Internal

dTRINITY dusd Audit 36

External Payable -

AmoManager Implementation AccessContr
ol

Public ✓ -

allocateAmo Public ✓ onlyRole

deallocateAmo Public ✓ onlyRole

totalAmoSupply Public -

totalCollateralValue Public -

decreaseAmoSupply Public ✓ onlyRole

isAmoActive Public -

enableAmoVault Public ✓ onlyRole

disableAmoVault Public ✓ onlyRole

removeAmoVault Public ✓ onlyRole

amoVaults Public -

IUniswapV3Poo
lState

Interface

slot0 External -

feeGrowthGlobal0X128 External -

feeGrowthGlobal1X128 External -

protocolFees External -

liquidity External -

ticks External -

tickBitmap External -

positions External -

dTRINITY dusd Audit 37

observations External -

dTRINITY dusd Audit 38

Summary
dTRINITY dusd contracts implement a system for managing the issuance, redemption, and

collateralization of dUSD stablecoins. This audit investigates security issues, business logic

concerns and potential improvements.

dTRINITY dusd Audit 39

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

