
// Smart Contract Security Assessment 09.23.2024 - 10.04.2024

Solidity Smart Contracts
dTRINITY

Report a Bug

Solidity Smart Contracts - dTRINITY

Prepared
by:

HALBORN Last Updated
12/11/2024

Date of Engagement by: September 23rd, 2024 - October 4th,
2024

Summary
 OF ALL REPORTED FINDINGS HAVE BEEN

ADDRESSED

ALL FINDINGS

3
CRITICAL

0
HIGH

1
MEDIUM

0
LOW

0

INFORMATIONAL

2

1 . I n t r o d u c t i o n

dTRINITY engaged Halborn to conduct a security assessment on their smart contracts
revisions beginning on September 23th,2024 and ending on October 04th,2024 . The security
assessment was scoped to the smart contracts provided to the Halborn team.

1 0 0%

2. A s s e s s m e n t S u m m a r y

The team at Halborn was provided two weeks for the engagement and assigned a full-time
security engineer to evaluate the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert with advanced
penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain
protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which were completely addressed by the dTRINITY team. The main ones were the following:

Always report the actual price returned by the oracle.
Implement CEI Pattern in AMO contracts.
Implement API3 recommendations.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance
e�ciency, timeliness, practicality, and accuracy regarding the scope of this assessment. While
manual testing is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance code coverage and quickly identify items that do
not follow the security best practices. The following phases and associated tools were used
during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions. (solgraph)
Manual assessment of use and safety for the critical Solidity variables and functions in

scope to identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Scanning of solidity files for vulnerabilities, security hot-spots or bugs. (MythX)
Static Analysis of security for scoped contract, and imported functions. (Slither)
Testnet deployment. (Brownie, Anvil, Foundry)

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coe�cient. This system is inspired by the industry standard Common Vulnerability
Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and
technical means by which vulnerabilities can be exploited and Impact describes the
consequences of a successful exploit.

The Severity Coe�cients is designed to further refine the accuracy of the ranking with two
factors: Reversibility and Scope. These capture the impact of the vulnerability on the
environment as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to
the highest security risk. This provides an objective and accurate rating of the severity of
security vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their
level of risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a
single transaction on the relevant blockchain. Includes but is not limited to financial and
computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the
contract due to a successfully exploited vulnerability. Confidentiality refers to limiting access
to authorized users only.

I N T E G R I T Y (I) :

M E

E

E = m ∏ e

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact
directly affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a
successfully exploited vulnerability. This metric refers to smart contract features and
functionality, not state. Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

M I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other
contracts.

M E T R I C S :

M I

I

I = max(m) +I

4
m − max(m)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coe�cient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and
methodology
4. Risk methodology
5. Scope
6. Assessment summary &
findings overview
7. Findings & Tech Details

7.1 Price reporting flaw in
oracleaggregator contract

7.2 Cei pattern not respected
in amo allocation functions
7.3 Oracle security
recommendations with api3
integration

8. Automated Testing

SEVERITY SCORE VALUE RANGE

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: solidity-contracts-preview

(b) Assessed Commit ID: 61c486b

(c) Items in scope:

DexOracleWrapper
OracleAggregator
OracleAware
AmoManager
CollateralVault
Issuer
Redeemer
UniV3AmoVault

Out-of-Scope: Non-specified contracts or libraries, third party dependencies and
economic attacks.

REMEDIAT ION COMMIT ID :

6e0323d
5f27d42

Out-of-Scope: New features/implementations after the remediation commit IDs.

https://github.com/dtrinity/solidity-contracts-preview/tree/main/
https://github.com/dtrinity/solidity-contracts-preview/commit/6e0323d1f24e41be0b60a34b8a8cf81fe6d7b072
https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97727a3cb7e68f11

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0
HIGH

1
MEDIUM

0
LOW

0

INFORMATIONAL

2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

PRICE REPORTING FLAW IN
ORACLEAGGREGATOR CONTRACT

HIGH
SOLVED -

11/08/2024

CEI PATTERN NOT RESPECTED IN AMO
ALLOCATION FUNCTIONS

INFORMATIONAL
SOLVED -

10/21/2024

ORACLE SECURITY RECOMMENDATIONS WITH
API3 INTEGRATION

INFORMATIONAL
SOLVED -

10/21/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 P R I C E R E P O RT I N G F L AW I N O R AC L E AG G R EG ATO R

C O N T R AC T

// HIGH

Description
The OracleAggregator contract contains a vulnerability in its _getPriceInfo function. When
the applyThresholding flag is set for an asset and its price exceeds the thresholdUsd, the
function artificially caps the reported price to 1 (priceUnit).

uint256uint256 publicpublic immutable priceUnit immutable priceUnit;;

constructorconstructor((uint8uint8 _priceDecimals _priceDecimals,, uint256uint256 _thresholdUsd _thresholdUsd)) {{
 priceDecimals priceDecimals == _priceDecimals _priceDecimals;;
 priceUnit priceUnit == 1010 **** _priceDecimals _priceDecimals;;
 thresholdUsd thresholdUsd == _thresholdUsd _thresholdUsd;;

 _grantRole_grantRole((DEFAULT_ADMIN_ROLEDEFAULT_ADMIN_ROLE,, msg msg..sendersender));;
 _grantRole_grantRole((ORACLE_MANAGER_ROLEORACLE_MANAGER_ROLE,, msg msg..sendersender));;
}}

functionfunction _getPriceInfo_getPriceInfo((
 addressaddress asset asset
)) privateprivate viewview returnsreturns ((uint256uint256 price price,, boolbool isAlive isAlive)) {{
 addressaddress oracle oracle == assetOracles assetOracles[[assetasset]];;
 ifif ((oracle oracle ==== addressaddress((00)))) {{
 revertrevert OracleNotSetOracleNotSet((assetasset));;
 }}

 ((priceprice,, isAlive isAlive)) == IOracleWrapperIOracleWrapper((oracleoracle))..getPriceInfogetPriceInfo((assetasset));;

 ifif ((applyThresholdingapplyThresholding[[assetasset]] &&&& price price >=>= thresholdUsd thresholdUsd)) {{
 returnreturn ((priceUnitpriceUnit,, truetrue));;
 }}

 returnreturn ((priceprice,, isAlive isAlive));;
}}

This flaw leads to undervaluation of assets when their prices exceed the threshold. It creates a
discontinuity in pricing that is exploitable by malicious actors. This vulnerability enables
arbitrage opportunities between this system and external markets using real prices.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:M/R:N/S:C (7.8)

Recommendation
It is recommended to remove the thresholding mechanism entirely. Always report the actual
price returned by the oracle:

functionfunction _getPriceInfo_getPriceInfo((
 addressaddress asset asset
)) privateprivate viewview returnsreturns ((uint256uint256 price price,, boolbool isAlive isAlive)) {{
 addressaddress oracle oracle == assetOracles assetOracles[[assetasset]];;
 ifif ((oracle oracle ==== addressaddress((00)))) {{
 revertrevert OracleNotSetOracleNotSet((assetasset));;
 }}

 returnreturn IOracleWrapperIOracleWrapper((oracleoracle))..getPriceInfogetPriceInfo((assetasset));;
}}

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:M/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:M/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:M/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:M/R:N/S:C

If handling extreme price movements is necessary, implement a more sophisticated mechanism
that doesn't involve price capping. Consider using a moving average or introducing a delay for
large price changes to mitigate the impact of short-term price spikes.

Remediation

SOLVED: The dTRINITY team removed the price threshold logic, so it's not an issue anymore.

Remediation Hash
https://github.com/dtrinity/solidity-contracts-preview/commit/6e0323d1f24e41be0b60a34b8
a8cf81fe6d7b072

References
dtrinity/solidity-contracts-preview/contracts/dusd/OracleAggregator.sol#L171

https://github.com/dtrinity/solidity-contracts-preview/commit/6e0323d1f24e41be0b60a34b8a8cf81fe6d7b072
https://github.com/dtrinity/solidity-contracts-preview/commit/6e0323d1f24e41be0b60a34b8a8cf81fe6d7b072
https://github.com/dtrinity/solidity-contracts-preview/blob/main/contracts/dusd/OracleAggregator.sol#L171

7. 2 C E I PAT T E R N N OT R ES P EC T E D I N A M O

A L LO CAT I O N F U N C T I O N S

// INFORMATIONAL

Description
The AmoManager contract's allocateAmo and deallocateAmo functions do not adhere to the
Checks-Effects-Interactions (CEI) pattern. These functions perform external interactions before
updating the contract's state, violating a crucial smart contract security principle:

// allocateAmo// allocateAmo
requirerequire((dusddusd..transfertransfer((amoVaultamoVault,, dusdAmount dusdAmount)),, "dUSD transfer failed""dUSD transfer failed"))
totalAllocated totalAllocated +=+= dusdAmount dusdAmount;;

// deallocateAmo// deallocateAmo
requirerequire((dusddusd..transferFromtransferFrom((amoVaultamoVault,, addressaddress((thisthis)),, dusdAmount dusdAmount)),,"dUSD"dUSD
totalAllocated totalAllocated -=-= dusdAmount dusdAmount;;

The state variable totalAllocated is updated after the external call, which is contrary to best
practices.

Due to the fact that dusd is created by dTRINITY Team, there is no risk, but it is better to
follow CEI pattern: https://github.com/dtrinity/solidity-contracts-
preview/blob/main/contracts/dusd/AmoManager.sol#L48

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
It is recommended to reorder the operations in both functions to follow the CEI pattern:
For allocateAmo:

https://github.com/dtrinity/solidity-contracts-preview/blob/main/contracts/dusd/AmoManager.sol#L48
https://github.com/dtrinity/solidity-contracts-preview/blob/main/contracts/dusd/AmoManager.sol#L48
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

totalAllocated totalAllocated +=+= dusdAmount dusdAmount;;
requirerequire((dusddusd..transfertransfer((amoVaultamoVault,, dusdAmount dusdAmount)),, "dUSD transfer failed""dUSD transfer failed"))

For deallocateAmo:

totalAllocated totalAllocated -=-= dusdAmount dusdAmount;;
requirerequire((
 dusd dusd..transferFromtransferFrom((amoVaultamoVault,, addressaddress((thisthis)),, dusdAmount dusdAmount)),,
 "dUSD transfer failed""dUSD transfer failed"
));;

Remediation

SOLVED: CEI pattern is now respected.

Remediation Hash
https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97
727a3cb7e68f11

References
dtrinity/solidity-contracts-preview/contracts/dusd/AmoManager.sol#L48

https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97727a3cb7e68f11
https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97727a3cb7e68f11
https://github.com/dtrinity/solidity-contracts-preview/blob/main/contracts/dusd/AmoManager.sol#L48

7. 3 O R AC L E S EC U R I T Y R EC O M M E N DAT I O N S WI T H

A P I 3 I N T EG R AT I O N

// INFORMATIONAL

Description
The current implementation of DexOracleWrapper.sol can be improved by leveraging API3's
dAPI (decentralized API) system. API3 provides a robust oracle solution with built-in security
features. However, a better implementation is crucial to maximize security benefits.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Recommended Implementation:
1. Use API3's IProxy Interface: Replace the current oracle implementation with API3's IProxy
interface:
2. Implement Strict Validation: Add rigorous checks for the returned values:

importimport "@api3/contracts/api3-server-v1/proxies/interfaces/IProxy.sol"@api3/contracts/api3-server-v1/proxies/interfaces/IProxy.sol

contractcontract DexOracleWrapperDexOracleWrapper isis IOracleWrapper IOracleWrapper {{
 IProxy IProxy publicpublic immutable proxy immutable proxy;;
 addressaddress publicpublic proxyAddress proxyAddress;;

 constructorconstructor((addressaddress _proxy _proxy)) {{
 proxy proxy == IProxyIProxy((_proxy_proxy));;
 }}

 functionfunction getPriceInfogetPriceInfo((addressaddress asset asset)) externalexternal viewview returnsreturns ((uintuint

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

 ((int224int224 value value,, uint256uint256 timestamp timestamp)) == proxy proxy..readread(());;
 requirerequire((value value >> 00,, "Invalid negative price""Invalid negative price"));;
 requirerequire((blockblock..timestamp timestamp -- timestamp timestamp <=<= 11 days days,, "Price data to"Price data to
 price price == uint256uint256((valuevalue));;
 isAlive isAlive == truetrue;;
 returnreturn ((priceprice,, isAlive isAlive));;
 }}

 functionfunction setProxyAddresssetProxyAddress((addressaddress _proxyAddress _proxyAddress)) externalexternal onlyOwn onlyOwn
 proxyAddress proxyAddress == _proxyAddress _proxyAddress;;
 proxy proxy == IProxyIProxy((_proxyAddress_proxyAddress));;
 }}
}}

Implementation Example

Remediation

SOLVED: The dTRINITY team is now doing the security checks within API3 integration.

Remediation Hash
https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97
727a3cb7e68f11

References
dtrinity/solidity-contracts-preview/contracts/dusd/wrapper/DexOracleWrapper.sol#L22

https://github.com/api3dao/data-feed-reader-example/blob/main/contracts/DataFeedReaderExample.sol
https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97727a3cb7e68f11
https://github.com/dtrinity/solidity-contracts-preview/commit/5f27d42856bc253d8f6ceccc97727a3cb7e68f11
https://github.com/dtrinity/solidity-contracts-preview/blob/main/contracts/dusd/wrapper/DexOracleWrapper.sol#L22

8 . AU TO M AT E D T EST I N G

Halborn used automated testing techniques to enhance the coverage of certain areas of the
smart contracts in scope. Among the tools used was Slither, a Solidity static analysis
framework.
After Halborn verified the smart contracts in the repository and was able to compile them
correctly into their abis and binary format, Slither was run against the contracts. This tool can
statically verify mathematical relationships between Solidity variables to detect invalid or
inconsistent usage of the contracts' APIs across the entire code-base.

All issues identified by Slither were proved to be false positives or have been added to the
issue list in this report.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial
for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code
modifications.

