

SECURITY AUDIT OF

DTRINITY

Public Report

Jun 17, 2024

Verichains Lab
info@verichains.io

https://www.verichains.io

Driving Technology > Forward

mailto:info@verichains.io
https://www.verichains.io/

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 2

ABBREVIATIONS

Name Description

Ether
(ETH)

A cryptocurrency whose blockchain is generated by the Ethereum platform.
Ether is used for payment of transactions and computing services in the
Ethereum network.

Ethereum An opensource platform based on blockchain technology to create and
distribute smart contracts and decentralized applications.

Smart
contract

A computer protocol intended to digitally facilitate, verify or enforce the
negotiation or performance of a contract.

Solidity A contract-oriented, high-level language for implementing smart contracts
for the Ethereum platform.

Solc A compiler for Solidity.

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 3

EXECUTIVE SUMMARY
This Security Audit Report was prepared by Verichains Lab on Jun 17, 2024. We would

like to thank the dTrinity team for trusting Verichains Lab in auditing smart contracts.
Delivering high-quality audits is always our top priority.

This audit focused on identifying security flaws in code and the design of dTrinity. The
scope of the audit is limited to the source code files provided to Verichains. Verichains Lab
completed the assessment using manual, static, and dynamic analysis techniques.

During the audit process, the audit team identify a vulnerable issue in the contract code.

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 4

TABLE OF CONTENTS
1. MANAGEMENT SUMMARY ..5	

1.1. About dTrinity ...5	
1.2. Audit scope ...5	
1.3. Audit methodology ..6	
1.4. Disclaimer ..7	
1.5. Acceptance Minute ..7	

2. AUDIT RESULT ...8	
2.1. Overview ..8	

2.1.1. Dex Contracts ..8	
2.1.2. Lending Contracts ...8	

2.2. Findings ..8	
2.2.1. - Arbitrary transferfrom calls in depositRewardFrom function9	

3. VERSION HISTORY ...10	

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 5

1. MANAGEMENT SUMMARY

1.1. About

dTrinity is a DeFi super-protocol designed to provide sustainable yield, lower borrowing
cost, and USD stablecoin liquidity for emerging L2 and L3 ecosystems, starting with Fraxtal.

1.2. Audit scope

This audit focused on identifying security flaws in code and the design of dTrinity. It was
conducted on commit e83dee81a65d99b5558eeb6b6a74c02611a883a5 from git repository link:
https://github.com/dtrinity/trinity-solidity-contracts.git.

The protocol is forked from Uniswap V3 and Aave V3. The audit team reviewed the
codebase of the origin code to ensure that the protocol is implemented correctly and securely:

Name Repository Commit Hash

Uniswap V3 Core Uniswap/v3-core d8b1c635c275d2a9450bd6a78f3fa2484fef73eb

Uniswap V3
periphery

Uniswap/v3-
periphery

697c2474757ea89fec12a4e6db16a574fe259610

Uniswap solidity lib Uniswap/solidity-lib c01640b0f0f1d8a85cba8de378cc48469fcfd9a6

Aave V3 core aave/aave-v3-core 724a9ef43adf139437ba87dcbab63462394d4601

Aave V3 periphery aave-v3-periphery 803c3e7d6d1c6da8d91411f4d085494f7189ea0b

Table 1. List of forked commits

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 6

1.3. Audit methodology

Our security audit process for smart contract includes two steps:

• Smart contract codes are scanned/tested for commonly known and more specific
vulnerabilities using public and RK87, our in-house smart contract security analysis
tool.

• Manual audit of the codes for security issues. The contracts are manually analyzed to
look for any potential problems.

Following is the list of commonly known vulnerabilities that were considered during the
audit of the smart contract:

• Integer Overflow and Underflow
• Timestamp Dependence
• Race Conditions
• Transaction-Ordering Dependence
• DoS with (Unexpected) revert
• DoS with Block Gas Limit
• Gas Usage, Gas Limit and Loops
• Redundant fallback function
• Unsafe type Inference
• Reentrancy
• Explicit visibility of functions state variables (external, internal, private and public)
• Logic Flaws

For vulnerabilities, we categorize the findings into categories as listed in table below,
depending on their severity level:

SEVERITY
LEVEL

DESCRIPTION

 A vulnerability that can disrupt the contract functioning; creates a critical
risk to the contract; required to be fixed immediately.

 A vulnerability that could affect the desired outcome of executing the
contract with high impact; needs to be fixed with high priority.

 A vulnerability that could affect the desired outcome of executing the
contract with medium impact in a specific scenario; needs to be fixed.

 An issue that does not have a significant impact, can be considered as less
important.

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 7

Table 2. Severity levels

1.4. Disclaimer

dTrinity acknowledges that the security services provided by Verichains, are conducted to
the best of their professional abilities but cannot guarantee 100% coverage of all security
vulnerabilities. dTrinity understands and accepts that despite rigorous auditing, certain
vulnerabilities may remain undetected. Therefore, dTrinity agrees that Verichains shall not be
held responsible or liable, and shall not be charged for any hacking incidents that occur due to
security vulnerabilities not identified during the audit process.

1.5. Acceptance Minute

This final report served by Verichains to dTrinity will be considered an Acceptance Minute.
Within 7 days, if no any further responses or reports is received from dTrinity, the final report
will be considered fully accepted by dTrinity without the signature.

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 8

2. AUDIT RESULT

2.1. Overview

dTrinity was developed using the Solidity language, with the required versions being
^0.7.0 and ^0.8.0.

The audit focused on forking and updating from the UniswapV3-core, UniswapV3-periphery,
AaveV3-core, AaveV3-periphery, and Solidity-lib repositories. The audit was conducted on a
dTrinity’s repository.

2.1.1. Dex Contracts

In the Dex contracts, the updated version introduces tick spacing for the fee amount. The
fee protocol requirements have been modified to range from 0 to 10, compared to the previous
range of 4 to 10. Protocol fees are collected from swap fees: a small portion of swap fees is
subtracted and saved as protocol fees to later be collected by the Factory contract owner. It
must be zero or between 1 and 1/10 of swap fees.

The initialization code has been updated to follow the changes made to the Uniswap V3
pool.

2.1.2. Lending Contracts

For the Oracle contract, the base_currency_init must match the base_currency_init of the
fallback oracle when setting it.

The priceFeedDecimals and rewardPriceFeed are reset after obtaining reward information
from the oracle.

A depositReward() function has been added to the AaveOracle interface. The
depositRewardFrom() function has been added to the rewardsController contract, allowing users
to send reward tokens to the reward controller contract to change the emission per second.

New dswap contracts have been added. The dswap adapter supports users in buying, selling,
and flash-loaning tokens with the Uniswap V3 pool.

2.2. Findings

During the audit process, the audit team identify a vulnerable issue in the contract code.

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 9

2.2.1. - Arbitrary transferfrom calls in depositRewardFrom function

Position:
• contracts/lending/periphery/rewards/RewardsController.sol#depositRewardFrom()

Description: The protocol allows users to deposit more rewards into the rewards controller
contract through the depositReward function in EmissionManager contract. The depositRewardFrom
function in the RewardsController contract allows any address to call. This can be exploited by
an attacker to force addresses that have approved the RewardsController contract to make an
unintended contribution.
// contracts/lending/periphery/rewards/EmissionManager.sol
function depositReward(
 address asset,
 address reward,
 uint256 amount
) external {
 require(amount > 0, "ZERO_AMOUNT");
 _rewardsController.depositRewardFrom(asset, reward, amount, msg.sender);
}

// contracts/lending/periphery/rewards/RewardsController.sol
function depositRewardFrom(
 address asset,
 address reward,
 uint256 amount,
 address from
) external {
 //...

 try
 IPullRewardsTransferStrategy(transferStrategyAddress)
 .getRewardsVault()
 returns (address vault) {
 //...
 IERC20(reward).transferFrom(from, vault, amount);
 //...
 } catch {
 revert("ONLY_ALLOW_DEPOSIT_TO_PULL_REWARDS_TRANSFER_STRATEGY");
 }
}

2.2.1.1. Recommendation:

Add a require statement to ensure that the caller is the EmissionManager contract.

UPDATES:

• Jun 17, 2024: The issue has been acknowledged and fixed by the dTrinity team.

Report for dTrinity

Security Audit – dTrinity

Version: 1.0 - Public Report

Date: Jun 17, 2024

Page 10

3. VERSION HISTORY

Version Date Status/Change Created by

1.0 Jun 17, 2024 Public Report Verichains Lab

Table 3. Report versions history

