CIT-58100 — MSCTS — 2023 — IUPUI

Cyber Deception in the Cloud: Automating

Database Canarytoken Implants - "Eleplanter’

Benjamin Rader
IUPUI
Purdue School of Engineering & Technology

1 INTRODUCTION & LITERATURE OVERVIEW

LOUD security is, by far, one of the most consequen-
C tial paradigm shifts in how we solve problems with
information technology. In short, it allows for outsourcing
layers of control or management of IT infrastructure or
systems to third parties. The cloud service provider han-
dles all of the problems with managing the systems and
machines, while users utilize simplified systems to solve
their problems. However, how the control and more often
the visibility between the cloud service provider (CSP)
and the user manifests will differ from implementation
to implementation or CSP-to-CSP. In a literal sense, this
interface of control and visibility depends on the CSP’s
implementation and the layer of the cloud service. There
is not a concrete consensus on what these layers are but
they generally go (from least control to most): applications
(SaaS), data (PaaS), runtime (PaaS, FaaS, CaaS), middleware
(PaaS, FaaS), virtualization (IaaS), OS (IaaS), server, storage,
and networking. Explaining each of these layers is outside
of the scope of this paper, but it is important to understand
how “cloud” affects the goals of cybersecurity. Each instance
of a type of cloud service (SaaS, PaaS, IaaS) has a sort of
"border” of control or visibility between the user and the
cloud service provider. For IaaS, that border exists at the
level of virtualization or machines. The defender’s dilemma
sums up the risk surfaces that arise at these borders. Being
a defender means covering all entry points or prioritizing
certain ones. The attackers only need one way in, but the
defender must cover the surfaces which the attacker will
inevitably try to exploit [13].

1.1 Stats - Integration with Cloud is Hard

As stated previously, the user of cloud services will have a
different amount of control based on what they are man-
aging. This becomes extremely cost-effective for engineers,
system architects, product makers, and developers because
they don’t have to worry about switching and routing to set
up a quick function-as-a-service. They don’t need to think
even for a second about port forwarding. For example, can
simplify their architecture when they go to cloud and leave
behind there reverse-proxied machines on-prem. However,
this merely shifts the issue from a wide surface of visibility
and forces it to be obtained through more abstract means.
In other words, abstraction can be an enemy to innovation,

progress, and solving IT problems. In the case of most cloud
service providers, the only answer is to create an abstract
interface for visibility and control between the user and
the provider. In the most literal sense this is done with
APIs (application programming interfaces) and integrations.
These abstractions must exist though because the cloud
service provider must be able to automate and optimize the
monumental task of managing huge amounts of infrastruc-
ture, being flexible to customer needs, and all while being
cost effective. However, this abstraction plays out differently
from cloud vendor to cloud vendor. What this means for
security is that there is a need for skills and problem-solving
abilities around integrations and APIs with cloud service
providers. This is why we see practitioners getting whole
certificates for single cloud service providers, because the
CSP has optimized and abstracted their systems so much
that you must spend weeks, if not months, to learn how to
utilize their interface between those layers of control with
cloud services.

The question becomes whether I am telling a sensible
truth or whether I am speculating from my background
in security which is quite limited. My experiences and
conversations with experts (by consensus) have led me
to conclude that cybersecurity practitioners do not spend
enough time contemplating these relationships in the cloud
and how to handle them. In terms of technical skills, it
seems apparent that “data engineering” which helps with
integration tasks is considerably more important than even
networking fundamentals when solving cybersecurity chal-
lenges in the cloud. Many practitioners hold that visibility
is more significant than setting up security controls early on
for prioritization benefits [6].

A large-scale survey from the renowned SANS Insti-
tute in 2022 on Cloud Security was conducted over sev-
eral hundred high-profile engineers, analysts, and CISOs
in cybersecurity. The survey deduced that the two largest
challenges for incident response in the cloud revolve around
visibility and correlating data: 1) Lack of real-time visibility
into events and communications involved in an incident
(48.5%), and 2) Difficulty correlating cloud and on-prem
data (40.7%). Additionally, the majority of these businesses
utilized CSP APIs for important security controls: IAM
(58%), Config MGMT (53.6%), Logging (51%), Encryption
and Data Protection (45.9%) [24]. According to the survey,

CIT-58100 — MSCTS — 2023 — IUPUI

most orgs are trying to connect SIEMs (security information
and event management systems) to cloud APlIs, but it is
difficult, costly, or requires rare minds or lots of certifications
and classes. This creates slowdowns in increasing organiza-
tions” security maturity because most are stuck trying to
switch to the cloud and utilize the information from CSPs.
The skillsets needed to solve these problems are, at best,
hit-and-miss. From the looks of it, the problems are only
becoming more difficult.

1.2 Welcome to Cyber Deception

1.2.1 How To Avoid Integration and Abstraction in the
Cloud

Cloud security is hard. Without bright minds at the forefront
of innovation in organizations, most businesses will have a
hard time evolving from on-prem to hybrid environments.
So, where can an organization turn next in the context of
the cloud environment and the various layers and control
and visibility based on service? The answer is simple...avoid
integration and manual intervention in operating these in-
terfaces. For example, instead of utilizing the API for a CSP
when working with IaaS (infrastructure as a service), opt-in
for an agent-based solution or use an ”“image” or machine
that has security and logging implemented already. Usually,
systems like this can be found on cloud marketplaces or
the like. Use a data engineering solution that specializes
in aggregation or integration before immediately turning
to the CSP’s specific implementation. Most of the time,
the problem will not require building custom integration
servers to get around the API. Security professionals merely
need to widen their net and terminology when exploring
solutions.

Having said all this, cyber deception is the epitome of
flexible detection and alerting. The case with cloud security
is abstraction. To get around abstraction, we need a process
that never changes: 1) plant this agent or entity that detects,
2) have it detect something, and 3) send the alert to a SIEM.
To do this in a way that extends to all layers of services in
the cloud (e.g. SaaS, IaaS). In other words, we need solutions
that are separate from the CSP APIs or integrations in terms
of the entity itself (agent), ways to detect and prioritize risk
(run code to send alert) in a way that is not CSP-specific,
and in a way that is universal in terms of format so that any
SIEM can use it.

1.2.2 Cyber Deception Explained with Knowledge Asym-
metry

The defender’s dilemma is a constant issue in cybersecurity.
It is assumed that attackers always have an asymmetric
advantage against defenders because of the simple fact of
risk coverage. However, many, including myself, would
argue that there is not an asymettric advantage for attackers,
but rather for defenders. The issue is that the defender’s true
advantage is not often utilized because it requires visibility,
communication, and thinking outside of the “box.”This
advantage can be called “knowledge asymmetry.”

One could explain this by alluding to American movies.
Often in action or adventure movies where there are ex-
ternal protagonists, the protagonist and the antagonist will
have a final conflict. Often, these conflicts are centered

2

around some sort of monument, landmark, a “final stand”,
or “Alamo” as it were. The good guys (the protagonists)
may have been defeated many times by the bad guys (the
antagonists) in the past because they had been outgunned or
outwitted. Often, the reasoning for their past losses is that
the good guys were not thinking inventively or were not
using their unique knowledge of what they are defending to
their advantage. The “final stand” of action and adventures
movies such as these usually culminate with imaginative
traps, deception, and using knowledge of the environment
to the advantage of the defenders. This strategy is the
essence of cyber deception.

From a philosophical or logical perspective cyber decep-
tion is a fusion of strategic knowledge asymmetry and the
art of manipulating the perceived reality within a system, ul-
timately creating a formidable defense against maliciously-
motivated threat actors. Defenders are exploiting their hope-
fully comprehensive understanding of a system’s normal
behavior and purpose to craft, maintain, and capitalize
on false realities. False realities are simply perceptions of
something that are false. This dynamic approach, which also
lends itself to a game theory mindset, not only confounds at-
tackers but also presents opportunities for detecting anoma-
lies and unmasking entities which are acting upon these
intentionally crafted false realities. In this intricate game
of perception, the defender’s proficiency in leveraging their
system knowledge becomes the linchpin of their success, as
they artfully blur the lines between reality and fabrication
[1].

As I mentioned briefly, this sort of method lends itself
to a game theoretical approach. In summary, a game in-
volves two entities with conflicting interests - “I want to
get a point and you want to get a point, but only one can
win.” The defenders in this case operate with incomplete
information about the motives and vantage point of the
attackers. However, it can be assumed they do not know
about the functions of certain systems. The fact that visi-
bility and collaboration is a difficult tasks in cloud security
becomes a strength when deceiving attackers, because these
weaknesses or challenges in visibility inform the defender
of the sorts of knowledge that they can leverage over the
attacker.

1.3 Cyber Deception Solution Landscape and Tax-
onomies

1.3.1 Game Theoretic Taxonomy for Cyber Deception

Most papers mentioning cyber deception are relatively new.
although some of the technical solutions themselves have
been around for a much longer time. Talk in this area
of cybersecurity is usually niche, but it is also a debated
topic which will be looked at in the next section of this
paper. However, there only seem to be a few instances of a
taxonomy being discussed. For instance, Pawlick discusses
a game theoretic taxonomy for the groups by dividing
them into perturbation, moving target defense, obfuscation,
mixing, honey-x, and attacker engagement [20]. These cate-
gories describe cyber deception methods from the perspec-
tive of how they fit into a defender-attacker environment,
but I think it is productive to also give a taxonomy for their
implementation and how that fits into the cloud paradigm.

CIT-58100 — MSCTS — 2023 — IUPUI

l i
= Perturhar:
-

—+{ Obfuscation
Mixing

Defensive
Deception

2
Dynamic — Atiacker Engagement

Fig. 1. Tree diagram of deception into "species.” "The specific differences
correspond to the game-theoretic notions of private information, actors,
actions, and duration.” Canary tokens fit into the Mimetic ¢, Static classi-
fication.

1.3.2 My Categories for Types of Cloud Cyber Deception
Implementation

Cloud Cyber Deception Implementation Categories:
1) Infra/CSP Specific

e Likely Examples: Honeypot Management,
Deceptive Network Traffic

o Usually requires a custom API

e Could include CSP-specific integrations

2) Integrated with CSP

o Likely Examples: Deceptive WAF, Honeypots

o Can be agent-based or include hosting some-
thing in the cloud like with a honeypot

o Can include premade integrations

3) Portable / External

o Likely Examples: Deception Tokens (canary
tokens), Decoy Data, Attribution or Beacon-
ing Code

e Data that is portable and separate from the
systems it abides in

o Can use external systems to activate alerts or
portable code to do so

o Can be thought of as tripwires

1.3.3 The Categories Explained

These categories synergize the core ideas of the cloud stack
and implement them based on the varying layers of ser-
vices in the cloud. Cyber deception technologies are not
categorized well because of the novelty of the practice. The
market will need to mature a bit more before we can get
a consistent way to talk about the different solutions [6].
I am attempting to do so with these categories. Starting
with Infra/CSP Specific, each one of theses three categories
focus on the work that needs to be done in each system
across that “boundary” of control which depends on the
type of service (SaaS, IaaS, e.g.). For instance, with a CSP
Specific Cyber Deception Method, you may be at the level
of “infrastructure as a service’ where you manage everything
above the virtualization of the machines. This virtualization
aspect does not explicitly handle the networking aspects
of say a VPC (virtual private cloud), so you may have to
use the CSP-provided system for managing honeypots (fake
vulnerable computers) and their networking. This differs
from deploying a singular honeypot where you only have
to manage that one box/machine. In that case, you can

3

because you are using IaaS and can manage the machines.
The less control that one has (at least with SaaS - software
as a service) in the cloud, the more likely it is that one will
have to rely on a custom cloud service provider (CSP) APL
This goes to show how the simplicity of solving one problem
with easy-to-deploy cloud technology will create new ones
of abstraction and loss of straightforward customization. We
have to rely more and more on custom interfaces to interact
with the systems that we do not manage. It is a dilemma to
say the least.

CSP-Specific: Using APIs and Integration

- Custom API
- CSP Integration

Integrated

- Hosted by CSP
- Agent-based
- premade API
or integration

Portable/External

Wrzzzzzza

- beaconing/
attribution code
- fake data
- canary tokens

User/SIEM

/) = user work & connecting alerts to SIEM

Fig. 2. These categories are designed to show the levels of implemen-
tation when it comes to using cyber deception methods in the cloud. It
is important to note that some technologies and methods may belong to
any number of categories in different contexts.

1.4 Expert Opinions on Cyber Deception

I thought it to be productive to look at expert practition-
ers and CISO (chief information security officer) opinions
on cyber deception technology. Ironically, I owned a book
that surveyed 54 cybersecurity practitioners with questions
obtained from Twitter users in cyber. One of the questions
was: “"Has your organization implemented any deception
technologies, and if so what effect has that had on the
blue team’s detection capabilities?” As I read through the
answers, it became apparent that there was a lot of support
but just as much uncertainty about the practical applications
of the technology. To be thorough, I aggregated all of the
answers by name, then labeled the answers with the below
attributes:

o Degree of Support (1-10) (x-axis)
o Degree of Confidence (1-10) (value)
o Support x Confidence (y-axis)

The result showed the distribution of opinions with more
weight going to confidence (darker) answers. Out of the
54 total respondents in the book, interestingly only 33 an-
swered. This is an interesting finding because rarely did
questions go unanswered or ignored by the respondents.

CIT-58100 — MSCTS — 2023 — IUPUI

One possible reason for this was that most respondents were
uncertain about the technology. Another is that these high-
profile experts do not want attackers to potentially know
about their methods.

Darker = More Confident

33/54 respondents
answered

w
(¥}
g .
w
om
o
2[:
o]
[)
x
o
o
O =«
a
a
g
m 0

Fig. 3. Graph showing cybersecurity expert and practitioner support
for cyber deception technologies. This is taken from my presentation.
Darker colors mean that the answers were more confident which also
equates to more weight/height.

The results were also fed through GPT-4 with exten-
sive prompts to gather a somewhat objective look at the
answers. The result shows that most of the dissenting
opinions tended to have less confidence. Also, the most
non-supporting answers were either “No” or “We should
focus on these other controls more.” One supporting answer
stated that deception tech gets “the most bang for your
buck.” Below are some takeaways and reasoning from both
sides:

e Support

- Early warning systems are cost effective
Helps learn adversary techniques

— Tons of visibility

- LOW False Positive Rate

e Opposition

— Only for mature organizations
— Time is better spent elsewhere
— Not a mature market yet

- HIGH False Positive Rate

You'll notice conflicting statements of "LOW” and
"HIGH” "False Positive Rates.” Essentially, one side is say-
ing that Cyber Deception alerts are hard to prioritize and
produce lots of noise and the other side is saying the exact
opposite.

1.4.1 An Explanation for HIGH vs LOW False Positive
Rates with Cyber Deception Technology

The reasoning for the conflicting conclusions about false
positive rates with cyber deception technology resides pre-
cisely in implementation and directly relates to the imple-
mentation categories put forth in this paper. For example,
canary files can be used in file systems to detect ransomware
[22]. Ransomware is a simple and quite effective method of
holding an entity’s data for ransom by encrypting it. Canary
files can be used as a tripwire for when these ransomware

4

programs start encrypting files on a system. The second the
file is encrypted, privileged system calls and actions like
encrypting data are locked down. However, say that the
implementer of these canary files puts them right on the
desktop. This might cause the suspicious user to manipulate
or delete them which would result in lots of false positives
and headaches for business operations. However, if the file
had been placed somewhere that only a hacker would ever
go, then it would only activate when there is surely an
incident happening.

The false positives or lack thereof are dependent on the
type of cyber deception technology and the implementation
methods and context.

2 IMPLEMENTATION
2.1 Portable/External Deception Technology

This is the category that seemingly has the best cost-
effectiveness and general applicability out of all of the
3 implementation categories devised in this paper. The
portability aspect refers to how the callback, beaconing, or
alerting functionality is achieved. In order to do security, we
need visibility. Typically, visibility is handled with a SIEM.
With the CSP-specific implementation or the integrated
cases, this means utilizing an integration or API to forward
alerts or information into the SIEM. Every different
detection case will be handled differently and some will be
more manual than others even though every one of them
are solutions to detect or prevent incidents. On the contrary,
portable deception tech does not rely on the abstractions
of the CSP service type or their interface. Instead, external
or portable means for delivering information or alerts are
relied upon.

I hypothesize there are two types of portable deception
technology:

1) Portable Alerting Instruction - This type of decep-
tion tech beacons, calls back, or sends a message
over the internet once the portable and hidden or
obfuscated code is run. Usually, the alerting instruc-
tion is unintentionally activated by the threat actor
or by a system the defenders predict would use
the instructions. Example: Honeybadger - implants
code in Excel to run and get the location of the
device which opened it [5].

2) 3rd Party Reliant Fake Data - This type of de-
ception technology involves mimicry just like with
the portable alerting code. However, the system,
process, or components that allow for direct alerting
to the defender exists due to external or 3rd party
systems that result in the alerting functionality. Ex-
ample: Fake data or fake credit card info - the threat
actor may go to use the fake data in some sort of
system that allows them to benefit, except this data
is designed to be watched for use which causes an
alert to be sent to the defenders.

2.2 3rd Party Reliant Fake Data

I believe this is a strong solution for deception technology.
The benefit with 3rd party reliant data is that the defenders

CIT-58100 — MSCTS — 2023 — IUPUI

do not have to rely on some alerting or beaconing code to
run in order for it to work. Instead, the data itself is portable
in extremely small amounts. This data could amount to a
string of numbers that are subsequently utilized in some
external system. The goal here is to find anomalies. The
only problem with this category is that the use cases have
lots of nuances and the types of data that can be used are
currently limited, unexplored, or require building infras-
tructure to get them working which defeats the purpose.
The only polished example of this type of technoloy would
be canarytokens|.Jorg.

2.3 My Tech Stack and Implementation - ”Eleplanter”

Eleplanter is a Python program that utilizes APIs and Al
to achieve automated canary token implantation with Post-
gres databases. Eleplanter capitalizes on portable 3rd party
reliant fake data.

OpenAl API

Use GPT to decide what
types of canary tokens can

CanaryToksns
API (fake
credit card)

Token
Provlder

Auth Table
Data

use
< Fostares
— for sQL
database

Fig. 4. Tech stack and architecture for Eleplanter. Taken from my pre-
sentation.

File System

Outline of the components:
o Token Provider (Canarytokens)

— Thinkst Canary is the most polished canary
token provider on the web. However, they
limit API use to organizations that pay at least
$5k yearly. Therefore, I generated manual ca-
nary tokens at canarytokens.org, then put the
relevant data into a canaries.json file.

— There are limited types of "3rd Party Reliant”
Canary tokens available:

* email - unique email address that will alert
you when emails are sent to it

* http - fake URL that activates an alert
when visited

* dns -a fake unique resolvable domain that
alerts the user when resolved

* aws_key - fake aws_access_key_id
,aws_secret_access_key, and associated
region which alerts the user when the API
key is used

* credit_card - fake credit card info which
sends an alert when used

* fast_redirect - fake URL that activates an
alert when visited, but also redirects the
user who activates it

o Python Program

— This program runs locally and utilizes vari-
ous configuration JSON files (credentials.json,

5

canaries.json, and canaries_schema.json) to 1)
connect to the database and relevant APIs, 2)
identify suitable tables and columns to apply
canaries to, and 3) update the database with
canary implanted data.

— The program utilizes libraries, including but
not limited to faker, psycopg2, tqdm, col-
orama, colorama, os, pathlib, random, re
(regex), csv, and json.

e OpenAl API

— The "text-davinci-003” model is used with
crafted prompts to help with various tasks
in the program: 1) look at column and row
data to determine the potential for canary use,
2) craft fake row data, and 3) utilize canary
components to implant organic instances of
the canarytoken values.

o PostgreSQL Database (hosted on Digital Ocean)

— DPostgres was used out of familiarity. A cheap
Postgres instance was rented on Digital Ocean
due to the simplicity of setup.

e DBeaver

— Functions as a local GUI for testing with my
remote Postgres database. It’s open source and
free as well.

3 EVALUATION

Fig. 5. Part of code that asks for user to approve or deny implantation
for instances of canary tokens for a fake row. The "Matches” are every
instance of matches with a table:column combination.

Most of the functionality of this program revolves
around using the GPT 3.5 (text-davinci-003) model from
OpenAl as a programmatic function in two ways: 1) to
return a “yes” or “no” for if a column can be implanted
with a canary token (if so, it adds the mapping to a csv for
later use), and 2) to generate fake data for rows and fake
instances that involve canarytoken values.

Frankly, GPT is not made for high-risk scenarios where
you must rely on a particularly formatted output or cases
where the result must be confident or accurate [11], [12],
[18]. However, this case of canary token implantation is not

CIT-58100 — MSCTS — 2023 — IUPUI

a high-risk case. However, there are times when improperly
formatted data or GPT hallucinations could implant data
into a table that is used for another program. This could
inadvertently cause the other program to have errors if it
doesn’t expect a certain format of input generated by a GPT.
To fix part of this I implemented a few type checks that parse
the GPT response when certain data types are necessary. For
instance, an integer column may need to be implanted and
GPT sends back a number with some text after it. In this
case, the program will pull out the longest number in the
text and use that.

Figure 5 shows an instance of a complete hallucination.
The first implant involves a “"CANARY” value of ”577.”
However, the "CANARY VALUES” include a cvv code of
273. In this case, GPT hallucinated and used one of the
example values mentioned in the prompt instead. This was
fixed with a longer and more costly prompt. However, this
also resulted in thousands more “tokens” (word /sub words)
which results in more costs and computation. This is where
the idea of “prompt engineering” comes in handy where we
need to have a balance between the length of the prompt
and the desired result.

In terms of runtime, the intial run of the program to
map out potential tables involves hundreds of calls using
the OpenAl API and around 5 minutes of runtime for a 4
table database. Doing so once only costs around $1.50 or so.

4 CONCLUSION

Eleplanter is an effective way to process tabular databases
efficiently and implant organically crafted instances of fake
rows which utilize canary tokens. These canary tokens
function as tripwires for ”actions on objectives” so that the
defender can know the second that the attacker utilizes
data that they have obtained. One may argue that it is too
late once this happens, but the fact of the matter is most
organizations take almost a year to realize a breach has
happened. With a canary token, the organization knows the
breach has occurred the instance that attackers attempt to
utilize the data they’ve obtained [14]. Moreover, in the case
of database canary implantation, the incident responders
can go to the exact system, database, and table where it
occurred. Most organizations cannot afford to hold detailed
system logs for long periods of time. With this sort of
early warning system, organizations can mobilize forensics
efforts and stop the bleeding. Cloud services present nu-
merous security problems mostly due to their necessary
abstractions and the complexities of interfacing with the
user at various levels of service. This makes visibility dif-
ficult and subsequently makes detection a heavy lift for
most organizations which either requires expensive vendor
solutions or unicorn cybersecurity engineers. Having the
ability to deploy or sprinkle canary tokens throughout high-
risk systems can allow for a backstop and safety net in
systems that organizations do not have the resources to
interface with. Most of the time, cloud security is hard
because it requires custom APIs and integrations. We should
not ignore this problem or say we need to simplify the cloud
and go yell at developers for how bad they are at designing
systems. Rather, we need to innovate and create solutions
that can be universally applied and repurposed for various

6

cloud service provider implementations. I hypothesize that
portable deception technology that is reliant on 3rd parties
for alerting functionality is a flexible way to apply tripwires
throughout an organization’s tabular databases, and I have
shown how that is done using my custom “Eleplanter”
program. Some improvements could include making fake
row generation more stable, improving prompts, utilizing
the Canarytokens API, and attempting to make a serverless
version of Eleplanter.

REFERENCES

[1] Towards self-adaptive cyber deception for defense., 2021.

[2] Rakshit Agrawal, Jack W Stokes, Lukas Rist, Ryan Littlefield, Xun
Fan, Ken Hollis, Zane Coppedge, Noah Chesterman, and Christian
Seifert. Long-term study of honeypots in a public cloud. IEEE
Xplore, page 1-4, 06 2022.

[3] Hamad Almohannadi, Irfan Awan, Al Hamar, Andrea Cullen,
Jules Pagan Disso, and Lorna Armitage. Cyber threat intelli-
gence from honeypot data using elasticsearch. IEEE Xplore, page
900-906, 05 2018.

[4] Goyal S B, Pradeep Bedi, Shailesh Kumar, Jugnesh Kumar, and
Nasrin Rabiei Karahroudi. Application of deep learning in honey-
pot network for cloud intrusion detection. Proceedings of Interna-
tional Conference on Computational Intelligence and Data Engineering,
pages 251-266, 2022.

[5] BHIS. Getting started with tracking hackers with honeybadger, 04
2020.

[6] Marcus] Carey and Jennifer Jin. Tribe of Hackers Blue Team. John
Wiley Sons, 08 2020.

[7] Tanmoy Chakraborty, Sushil Jajodia, Jonathan Katz, Antonio Pi-
cariello, Giancarlo Sperli, and Subrahmanian V S. A fake online
repository generation engine for cyber deception. IEEE Transac-
tions on Dependable and Secure Computing, 18:518-533, 03 2021.

[8] Jin-Hee Cho, Dilli P Sharma, Hooman Alavizadeh, Seunghyun
Yoon, Noam Ben-Asher, Terrence] Moore, Dong Seong Kim, Hyuk
Lim, and Frederica F Nelson. Toward proactive, adaptive defense:
A survey on moving target defense. IEEE Communications Surveys
Tutorials, 22:709-745, 2020.

[9] Brian Corcoran. A comparative study of domestic laws constrain-
ing private sector active defense measures in cyberspace. Harvard
National Security Journal, 11:1, 2020.

[10] Hai Jin, Zhi Li, Deqing Zou, and Bin Yuan. Dseom: A frame-
work for dynamic security evaluation and optimization of mtd in
container-based cloud. IEEE Transactions on Dependable and Secure
Computing, pages 1-1, 2019.

[11] Daniel Martin Katz, Michael James Bommarito, Shang Gao, and
Pablo Arredondo. Gpt-4 passes the bar exam, 03 2023.

[12] Anis Koubaa. Gpt-4 vs. gpt-35: A concise showdown.
Preprints.org, 03 2023.

[13] Martin C Libicki, Lillian Ablon, and Tim Webb. The defender’s
dilemma: Charting a course toward cybersecurity. Rand Corporation,
2015.

[14] Ponemon Institute LLC. Cost of a data breach study, 2022.

[15] Stefan Machmeier. Honeypot implementation in a cloud environ-
ment, 01 2023.

[16] Nitin Naik and Paul Jenkins.
Predicting fingerprinting attacks on honeypot systems.
Xplore, page 1-8, 10 2018.

[17] Eric Nunes, Paulo Shakarian, Gerardo I Simari, and Andrew Ruef.
Artificial intelligence tools for cyber attribution. Springer International
Publishing, 2018.

[18] OpenAl Gpt-4, 03 2023.

[19] Kyungmin Park, Samuel Woo, Daesung Moon, and Hoon Choi.
Secure cyber deception architecture and decoy injection to mitigate
the insider threat. Symmetry, 10:14, 01 2018.

[20] Jeffrey Pawlick, Edward Colbert, and Quanyan Zhu. A game-
theoretic taxonomy and survey of defensive deception for cyber-
security and privacy. ACM Computing Surveys, 52:1-28, 08 2019.

[21] Sampsa Rauti. Towards cyber attribution by deception. Hybrid
Intelligent Systems, pages 419-428, 08 2020.

[22] Abdul Rahim Saleh, Gihad Al-Nemera, Saif Al-Otaibi, Rashid
Tahir, and Mohammed Alkhatib. Making honey files sweeter:
Sentryfs — a service-oriented smart ransomware solution, 08 2021.

Discovering hackers by stealth:
IEEE

CIT-58100 — MSCTS — 2023 — IUPUI

[23]

[24]

[25]

[26]
[27]

(28]

[29]

Sailik Sengupta, Ankur Chowdhary, Abdulhakim Sabur, Adel
Alshamrani, Dijiang Huang, and Subbarao Kambhampati. A
survey of moving target defenses for network security. IEEE
Communications Surveys Tutorials, 22:1909-1941, 2020.

Dave Shackleford. Sans 2022 cloud security survey — sans
institute, 03 2022.

S Sivamohan, Sridhar S S, and S Krishnaveni. Efficient multi-
platform honeypot for capturing real-time cyber attacks. Intelligent
Data Communication Technologies and Internet of Things, pages 291—
308, 2022.

Alexander Washofsky. Deploying and analyzing containerized
honeypots in the cloud with t-pot, 09 2021.

DONNIE WENDT. Addressing both sides of the cybersecurity
equation, 09 2019.

Ben Whitham. Minimising paradoxes when employing honeyfiles
to combat data theft in military networks. IEEE Xplore, page 1-6,
11 2016.

Quanyan Zhu. The doctrine of cyber effect: An ethics framework
for defensive cyber deception, 02 2023.

