
SMART CONTRACTS REVIEW

May 15th 2024 | v.	1.0

score

96

PASS
Zokyo Security has concluded that

this smart contract passed a security

audit.

Security Audit Score

Zokyo Audit Scoring Steadefi

1

Steadefi Smart ContractS Review

1. Severity of Issues:

 - Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

 - High: Important issues that can compromise the contract in certain scenarios.

 - Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

 - Low: Smaller issues that might not pose security risks but are still noteworthy.

 - Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.

2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.

3. Code Quality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.

4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.

5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.

6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

Hypothetical Scoring Calculation:

2

Steadefi Smart ContractS Review

Let's assume each issue has a weight:

- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- 1 Critical issue: 1 resolved = 0 points deducted 
- 2 High issues: 0 points deducted 
- 6 Medium issues: 1 acknowledged and 5 resolved = - 3 points deducted

- 8 Low issues: 1 acknowledged and 7 resolved = - 1 points deducted

- 6 Informational issues: 6 resolved = 0 points deducted
 

Thus, 100 - 3 - 1 = 96

3

Steadefi Smart ContractS Review

This document outlines the overall security of the Steadefi smart contract/s evaluated by the
Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Steadefi smart contract/s
codebase for quality, security, and correctness.

There was 1 critical issue found during the review. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract/s but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Steadefi team put in place a bug
bounty program to encourage further active analysis of the smart contract/s.

4

Steadefi Smart ContractS Review

9Complete​ ​Analysis

7Executive Summary

8Structure​ ​and​ ​Organization​ ​of​ ​the Document

5Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

5

Steadefi Smart ContractS Review

Within the scope of this audit, the team of auditors reviewed the following contract(s):

LendingVault.sol

The source code of the smart contract was taken from the Steadefi repository:   

Repo: https://arbiscan.io/address/0x68915861F9444AcB0Ffea0cC2BCa71eD2455F25A#code 

Last commit with fixes - https://gist.github.com/jefflam/c9cd85a8448d223660f5e233336921f4

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most recent vulnerabilities;

Meets best practices in code readability, etc.

https://arbiscan.io/address/0x68915861F9444AcB0Ffea0cC2BCa71eD2455F25A#code
https://gist.github.com/jefflam/c9cd85a8448d223660f5e233336921f4

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contract/s by industry leaders.

03 Thorough manual review of the
codebase line by line.

6

Steadefi Smart ContractS Review

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Steadefi smart contract/s. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Foundry testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

04 Thorough manual review of the
codebase line by line.

7

Steadefi Smart ContractS Review

Executive Summary

 The Zokyo team has performed a security audit of the provided codebase. The contract
submitted for auditing is well-crafted and organized. Detailed findings from the audit
process are outlined in the "Complete Analysis" section.

 The LendingVault.sol smart contract from the Steadefi protocol is, as its name implies, a
vault contract that has an underlying asset that can be set as a native asset or not.

 Any user can deposit native tokens without any restriction if the vault is deployed as a
native one. If not, they can deposit ERC20 assets' tokens in exchange for vault shares. Users
can deposit assets when the vault is not paused, which could be triggered by the owner by
executing functions restricted to the owner. On the other hand, users can withdraw the
deposited assets by returning vault shares without any restrictions; they can withdraw even
if the vault is paused.

 The vault contains a 'special actor', defined as a 'borrower'. The owner can approve new
borrowers by calling approveBorrower(), and revoke already approved borrowers by calling
revokeBorrower(). Borrowers are allowed to borrow assets from the vault by calling borrow()
when the vault is not paused. Borrowers can also repay their debt by calling repay() even
when the vault is paused. Additionally, there is an emergencyRepay function which allows
any user to repay the debt of a defaulter (borrower).

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Steadefi team and the Steadefi team is aware of it, but they have chosen to not
solve it. The issues that are tagged as “Verified” contain unclear or suspicious functionality
that either needs explanation from the Client or remains disregarded by the Client.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

8

Steadefi Smart ContractS Review

9

Steadefi Smart ContractS Review

Complete​ ​Analysis

Findings summary

Acknowledged

Resolved

Resolved

Resolved

Acknowledged

Resolved

Resolved

Medium

Low

Low

Medium

Low

Low

Medium

RiskTitle# Status

Resolved

Resolved

Resolved

Resolved

Medium

Low

Low

Resolved

Resolved

Resolved

Resolved

3

13

15

Critical

Medium

Medium

Low

Low

1

ETH CAN GET STUCK IN THE CONTRACT

Redundant checks

Kink1 can be greater than kink2

5

7

9

11

2

12

14

6

8

10

4

VAULT IS VULNERABLE TO INFLATION ATTACK

FRONT-RUNNING USERS IS POSSIBLE BY THE
PROTOCOL TO OBTAIN A HIGHER FEE

performanceFee CAN LEAD TO DENIAL OF SERVICE
(DOS)

INTEREST RATE CALCULATION DOES NOT COVER
COMMENTED CASE

ENUMERABLESET’S FUNCTIONS `add()` and `remove()`
RETURNED VALUES ARE NOT CHECKED

BORROWERS CAN DRAIN THE VAULT FREELY

Missing Sanity checks for constructor parameters

depositNative() does not check for isNativeAsset

PRECISION LOSS

CHECK-EFFECTS-INTERACTIONS PATTERN
NOT FOLLOWED

RESTRICTED MODIFIER IS RECOMMENDED TO
BE USED ONLY IN EXTERNAL FUNCTIONS

PROTOCOL CAN BECOME UNUSABLE DUE TO DOS

10

Steadefi Smart ContractS Review

Resolved

Resolved

Resolved

Informational

Informational

Informational

RiskTitle# Status

Resolved

Resolved

Resolved

Informational

Informational

Informational

17

21

19

USE UNCHECKED ARITHMETIC

CALLING EXTERNAL FUNCTIONS CONSUME LESS

GAS THAN PUBLIC

CATCH ARRAY LENGTH

16

20

18

UNNECESSARY CHECKS

USE ++i INSTEAD OF i++

CONSIDER USING IMMUTABLE VARIABLES

11

Steadefi Smart ContractS Review

Critical-1 Resolved

VAULT IS VULNERABLE TO INFLATION ATTACK

The `depositNative` and `deposit` functions allow users to deposit asset in exchange for
shares of the LendingVault. The `mintShares` function is the one that calculates and mints
the corresponding amount of shares to the users.

The calculation of the corresponding amount of shares depends on on-chain and
manipulable factors like the amount of assets hold in the vault. In other words, it is
vulnerable to inflation attack.

Consider this scenario
 The vault has just been deployed so that totalAssets() = 0 and totalSupply() = 0
 Attacker deposit 1 wei of asset so now totalAsset() = 1 and attacker gets minted 1 wei of

shares, totalSupply() is equal to 1 wei now also. Attacker now owns 100% of the vault’s
supply

 Victim now execute a deposit of 2_000e18 assets
 Attacker front-runs the victim and directly transfers 20_000e18 assets to the pool
 The calculation of the victim’s shares would now be:

2_000e18 * 1 / ((20_000e18 + 1) - 2_000e18) = 0

As a result the victim gets 0 shares minted and now the attacker can withdraw all the funds as
he owns 100% of the supply.

12

Steadefi Smart ContractS Review

Proof of concept:

Recommendation:

UniswapV2 solved this vulnerability by sending a considerable amount of shares to the zero
address when totalSupply() = 0. (https://github.com/Uniswap/v2-core/blob/master/contracts/
UniswapV2Pair.sol#L119-L124). The same solution can be applied to this case. Adding a
require to not allow minting 0 shares is also recommended.

There also other options for solving the vulnerability (https://blog.openzeppelin.com/a-novel-
defense-against-erc4626-inflation-attacks).

https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol#L119-L124
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol#L119-L124
https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks
https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks

13

Steadefi Smart ContractS Review

Medium-1 Acknowledged

BORROWERS CAN DRAIN THE VAULT FREELY

Borrowers are allowed to borrow assets but they are not paying any collateral so that they
can leave with the asset and never pay their debt back. The borrow() function is only
callable by users set as borrowers so that any user set as borrower can drain the vault easily
and freely.

This can lead to scenarios where any single authorized borrower can run away with all the
funds of all the lenders or depositors. For example, let’s say there are 2 depositors- Alice and
Jim. Alice deposits 10 x 10**18 of Native tokens while Jim deposits 1 x 10**18 Native tokens.
Then it is possible that an authorized borrower say Bob borrows all of 11 x 10**18 tokens and
runs away

 borrow(uint256 borrowAmt):

14

Steadefi Smart ContractS Review

The described scenario is directly affecting the withdraw() functionality. If a borrower drains
the vault freely then the rest of the users will not be able to withdraw any asset by calling
the withdraw() function.

The described scenario would also impact on the amount of shares calculation for user’s
minting.

As it can bee seen totalAsset() is not only the actual amount of assets in the vault
(totalAvailableAsset()) but the addition of it with every pending interest and the total amount
of borrows (totalBorrows). This means that if a borrower can borrow unlimited amount
without any collateral he can freely inflate totalAsset() and a consequence reduce the
amount of shares calculated.

Proof of concept:

totalAsset() is used as denominator in the operation and totalAsset() is:

15

Steadefi Smart ContractS Review

Recommendation:

The borrow function must implement a mechanism that forces the borrower to deposit a
collateral when borrowing assets. This collateral should be kept by the contract/protocol until
borrowers pay their debt back. Ideally the collateral should be able to get liquidated, enforcing
the borrower to keep a healthy position.

It is advised to add robust and concrete rules that govern borrowing of the assets. This can be
done by adding more rules in the smart contract or writing a Borrow smart contract that
governs and securely manages borrowing from the Vault including the borrow() function. In
addition to that it is advised to decentralize the calling of approveBorrower() function further
by the usage of multisigs.

16

Steadefi Smart ContractS Review

Medium-2 Acknowledged

ETH CAN GET STUCK IN THE CONTRACT

The contract implements a receive() function. The purpose of this receive function is to
receive the ETH as a result of a withdraw() from its wrapped version, they confirm it in the
NatSpec comment: `Fallback function to receive native token sent to this contract, needed
for receiving native token to contract when unwrapped` . The problem with this is that they
added: if (!isNativeAsset) revert Errors.OnlyNonNativeDepositToken(); This check ensures
that the receive function is only callable when the vault’s variable `isNativeAsset` has been
set to true but it does not ensure that all the ETH received comes from the result of
executing withdraw() in the wrapped version.

This scenario is also possible
 isNativeAsset has been set to true
 The contract is able to receive ETH as a result of `withdraw()` from the native token

wrapped version, this is correct
 Any user can manually or as a result of an external integration send ETH to the contract.

This ETH sent is getting stuck and can not be withdrawn.

Proof of concept

 1st: deploy a native vault:

17

Steadefi Smart ContractS Review

 2nd: directly send ETH

Recommendation:

Instead of using this check ` if (!isNativeAsset) revert Errors.5();` in the receive() function, use `if
(msg.sender != address(asset) revert Errors.OnlyNonNativeDepositToken()`.

18

Steadefi Smart ContractS Review

Medium-3 Resolved

PROTOCOL CAN BECOME UNUSABLE DUE TO DOS

There is a problem with the use of for loops in _pendingInterests functions. The loops go
through _approvedBorrowers array so if this array grows enough to txs run out of gas then
there is a problem. Specially with _pendingInterests function as it is used in
_updateVaultWithInterestsAndTimestamp which is used in almost every important function
of the protocol so the impact will the an entire DOS of the protocol. The borrowAPR()
function also implements the same loop but it will not consume gas as it is a view function
that is not called internally in the contract by a non view one

 _pendingInterests(uint256 assetAmt):

Recommendation:

Add a maximum length check in approveBorrower() function to do not allow adding more
than x borrowers to avoid having an extra large array that may run transactions out of gas. Be
aware that if at some point transactions start running out of gas then some borrowers would
have to get revoked.

19

Steadefi Smart ContractS Review

Medium-4 Resolved

FRONT-RUNNING USERS IS POSSIBLE BY THE PROTOCOL TO OBTAIN A HIGHER FEE

The performanceFee variable is a key variable to calculate the fee obtained by the protocol.
This variable can be changed by calling the `updatePerformanceFee` function by the
`restricted` user/users.

Recommendation:

Do not allow performanceFee to be changed or add a grace period where the change is not
directly applied.

If a user executes a transaction, the user marked as `restricted` can front-run it and change
the performanceFee to a higher value resulting on the protocol earning more fees, this could
take place specially on large transaction with a huge amount of funds.

20

Steadefi Smart ContractS Review

Medium-5 Resolved

PRECISION LOSS

The lendingAPR() function which returns the current lendingAPR, calculated as borrowAPR *
utilizationRate * (1 - performanceFee) implements a division before a multiplication in the
formula which can lead to rounding error as Solidity rounds down decimals.

The used formula:

Recommendation:

Execute every multiplication before divisions, the new formula would be:

21

Steadefi Smart ContractS Review

Medium-6 Resolved

performanceFee CAN LEAD TO DENIAL OF SERVICE (DOS)

The function `updatePerformanceFee()` allows the restricted user to change and set a new
performanceFee. If performanceFee is set to a value higher than SAFE_MULTIPLIER (1e18) it
will produce a denial of service due to an underflow in the `lendingAPR()` function.

The lendingAPR() function uses ((1* SAFE_MULTIPLIER) - performanceFee) as one of the
factors for calculating the lending APR. If performanceFee is set to a value higher than 1e18,
for example 1e19, then the mentioned factor would be 1e18 - 1e19 which would revert.

In the described scenario every call to lendingAPR() would revert.

Proof of concept:

Recommendation:

Implement a check that reverts if the new value for performanceFee is higher than
SAFE_MULTIPLIER. The check should be implemented not only in updatePerformanceFee()
function but also in the constructor where the performanceFee is first set.

22

Steadefi Smart ContractS Review

 Low-1 Acknowledged

CHECK-EFFECTS-INTERACTIONS PATTERN NOT FOLLOWED

The checks effects interactions pattern has not been followed in the depositNative()
function. This function allows external call to the native asset contract on line: 267, after
which state changes are done.

 IWNT(address(asset)).deposit{ value: msg.value }();

This can be risky and make the contract vulnerable to cross-contract reentrancy as some of
the native assets can be upgradeable contracts and can contain malicious code or code with
bugs even though non-reentrant modifiers are used.. Instead it is advised to call the external
interaction after all the state changes are done.

Recommendation:

It is advised to use checks effects interactions pattern as a best practice for security and
call the external function/interaction with the external contract at the end after all the state
changes.

Comment: The team said that they can't push deposit() function down to follow CEI as it will
result in totalAssets() function being incorrect resulting in mintShares() error.

23

Steadefi Smart ContractS Review

 Low-2 Resolved

INTEREST RATE CALCULATION DOES NOT COVER COMMENTED CASE

The internal function _calculateInterestRate() is used for calculating the interest rate based
on the borrower’s model and overall utilization rate. The function contemplates 3 different
cases depending on the value of _utilization compared with _interestRate.kink2 and
_interestRate.kink1 from the user’s interestRate.

The first case should come when _utilization is above _interestRate.kink2, the second case
should come when _utilization is between _interestRate.kink2 and _interestRate.kink1 and
the third case should come when _interestRate is below _interestRate.kink1 as it has been
stated in the code comments.

The issue is related with the `if` statement for the second and third described cases:

Recommendation:
Use <= in the `if` statement instead of `<`.

The changes would result on this:

The implementation for second case is including kink2 but not kink1 which is being included
in the third case. Following the comment ‘If _utilization below kink1’ it can be derived that
kink1 should be part of the second case not the third one.

24

Steadefi Smart ContractS Review

 Low-3 Resolved

RESTRICTED MODIFIER IS RECOMMENDED TO BE USED ONLY IN EXTERNAL
FUNCTIONS

LendingVault.sol inherits from AccessManaged.sol, which is a library from OpenZeppelin
(https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/
manager/AccessManaged.sol). One of the ‘IMPORTANT’ notes described in the contract is
that the `restricted` modifier should never be used on internal functions and judiciously
used in `public` ones, it should be ideally used on `external functions`.

LendingVault.sol implements the `restricted` modifier in 2 `public` functions,
`updateInterestRate()` and `updateMaxInterestRate()`. These 2 functions are not called
internally so they can be redefined as `external`.

Recommendation:
Redefine `updateInterestRate()` and `updateMaxInterestRate()` as `external` functions to
comply with the library recommendations.

 Low-4 Resolved

ENUMERABLESET’S FUNCTIONS `add()` and `remove()` RETURNED VALUES ARE NOT
CHECKED

The functions `.add()` and `.remove()` from Openzeppelin’s EnumerableSet library (https://
github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/
EnumerableSet.sol) return `true` is the addition or removal has been correctly executed,
meaning that the item to remove was present in the set. It is a good practice to check the
return value and revert if false

Recommendation:
Check the return value from `.add()` and `.remove()` in `approveBorrower()` and
`revokeBorrower()` functions and revert if false.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/manager/AccessManaged.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/manager/AccessManaged.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol

25

Steadefi Smart ContractS Review

 Low-5 Resolved

Missing Sanity checks for constructor parameters

In contract LendingVault.sol, there are missing sanity checks and validations for
_performanceFee and _maxCapacity parameters in the constructor.

Recommendation:
It is advised to add appropriate sanity checks for the same.

 Low-6 Resolved

Redundant checks

Redundant check on line: 265:

if (assetAmt == 0) revert Errors.InsufficientDepositAmount();

This check is redundant because lines: 262 and 263 already cover the scenario for the
check on line: 265. And thus can be removed.

Recommendation:
It is advised to remove the redundant check.

 Low-7 Resolved

depositNative() does not check for isNativeAsset

The depositNative() can be called even if the isNativeAsset is NOT set to true. The function
is currently callable even if isNativeAsset is set to false, although it reverts if the asset it is
not a native asset.

Recommendation:
It is still advised to explicitly add a require check to ensure that isNativeAsset is set to true
when depositNative() is called for better error handling and debugging.

26

Steadefi Smart ContractS Review

 Low-8 Resolved

Kink1 can be greater than kink2

In the function updateInterestRate() there is no check to see whether kink1 is lesser than
kink2 or not. This can result in miscalculation or errors when _calculateInterestRate() is
being called and calculated.

Recommendation:
It is advised to add a specific check to see whether kink1 is lesser than kink2 or not when
updateInterestRate() is being called.

Informational-1 Resolved

UNNECESSARY CHECKS

There are some ERC20 related checks that are no needed because they are internally
checked.

Code parts

 withdraw() function:

Recommendation:

Remove the mentioned lines as they are internally checked.

 deposit() function:

27

Steadefi Smart ContractS Review

Informational-2 Invalid

utilizationRate IS NOT IN TERMS OF ASSET’S DECIMALS.

The function utilizationRate() is assuming that the asset’s decimals are 18. There is a
restriction that does not allow asset’s decimals to be higher than 18 but it does allow them to
be equal or lower than 18, for example, 6.

Following the implementation of the utilizationRate() function, if totalAssert_ is not 0 then the
utilizationRate is returned in terms of 1e18 instead of asset’s decimals.

Example: let’s say that asset has 6 decimals
 totalBorrows: 100*1e
 SAFE_MULTIPLIER: 1e1
 totalAsset: 200*1e6

utilizationRate: (100*1e6 * 1e18) / 200 * 1e6 = 100 / 200 * 1e18

Recommendation:

Use asset.decimals() instead of SAFE_MULTIPLIER for the multiplication to obtain the
utilizationRate in terms of asset’s decimals.

The above described scenario now would be
 utilizationRate: totalBorrows * asset.decimals() 7 totalAsserts_

utilizationRate: (100*1e6 * 1e6) / 200 * 1e6 = 100 / 200 1e6

28

Steadefi Smart ContractS Review

Informational-3 Resolved

USE UNCHECKED ARITHMETIC

The 'unchecked' block in Solidity is employed to bypass automatic overflow and underflow
checks on arithmetic operations. When used within this block, arithmetic calculations
proceed without triggering these automatic checks, leading to gas savings.

LendingVault.sol implements 2 for loops that can save gas if unchecked arithmetic is
implemented in _pendingInterests() and borrowAPR().

Recommendation:

Add `unchecked{}` for i++ increment in for loop.

Informational-4 Resolved

CONSIDER USING IMMUTABLE VARIABLES

An immutable variable, assigned once during contract deployment and thereafter read-only,
can result in substantial gas savings. This stands in contrast to constant variables, which
incur gas consumption each time they are accessed due to their evaluation process.

LendingVault.sol contains some variables that can not be changed after deployment which
could save gas if marked as `immutable`.

Recommendation:

Consider marking variables which are not changing after deployment as `immutable` to save
gas.

29

Steadefi Smart ContractS Review

Informational-5 Resolved

CATCH ARRAY LENGTH

Storing the array length in a variable before the loop starts reduces the number of read
operations, resulting in a saving of approximately 3 gas units per iteration. This practice can
yield substantial gas savings, particularly in situations involving loops that iterate over large
arrays.

LendingVault.sol implements 2 for loops that can save gas if array.length is catched before
the `for loop`.

Recommendation:

Catch array.length before the `for loop` to save gas.

Informational-6 Resolved

USE ++i INSTEAD OF i++

The post-increment operation, i++ , requires more gas compared to pre-increment (++i).
Post-increment involves both incrementing the variable i and returning its initial value, which
necessitates the use of a temporary variable. This additional step results in extra gas
consumption, approximately 5 gas units per iteration

LendingVault.sol implements 2 for loops that can save gas if i is pre incremented.

Recommendation:

Use `++i` instead of `i++` in for loops.

30

Steadefi Smart ContractS Review

Informational-7 Resolved

CALLING EXTERNAL FUNCTIONS CONSUME LESS GAS THAN PUBLIC

Invoking an external function generally incurs lower gas costs compared to a public function
when accessed externally. This efficiency arises from the fact that external functions can
bypass one step of copying argument data, moving it directly from calldata to memory.

Recommendation:

Consider defining public functions as external when they are not called inside the contract
by other functions.

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

LendingVault.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassReentrance

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

31

Steadefi Smart ContractS Review

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug
bounty program to encourage further analysis of the smart contract by
third parties.

Steadefi

Steadefi

