
Steadefi
Security Testing and Assessment

May 1, 2023

Prepared for Steadefi

Narya.ai

1

Table of Content

Summary 4
Overview 4
Project Scope 4
Summary of Findings 4
Throughout the testing, we identified 4 issues of high, medium, and low severity: 4

Disclaimer 5
Project Overview 6
Tests 6

Tested Invariants and Properties 6
Key Findings and Recommendations 8

1. Wrong behavior of withdrawRewardsTokens() 8
Description 8
Impact 8
Failed Invariant 8
Recommendation 9
Remediation 9

2. Index collision in redeem array 10
Description 10
Impact 10
Failed Invariant 11
Recommendation 11
Remediation 11

3. Missing events in the functions that change important states 12
Description 12
Recommendation 13
Remediation 13

4. Users are unable to withdraw their stakes if the farm rewards are less than the claimable
ones 14

Description 14
Impact 15
Failed Invariant 16
Recommendation 16
Remediation 16

Fix Log 17
Appendix 18

Severity Categories 18
Difficulty Levels 18

2023 Narya.ai
2

Summary

Overview
From April 10, 2023, to April 17, 2023, Steadefi engaged Narya.ai to test the security of its
TokenManager and Farms contracts in the GitHub repository:
https://github.com/steadefi/steadefi-contracts (commit
82835ba2240beef856c56e8e4a5e241357b02db0).

TokenManager and Farms contracts are the masterChef and farming contracts for Steadefi’s
native token STEADY. They have the following features:

● Converting STEADY to esSTEADY (the non-transferable version of STEADY).
● Staking STEADY and claiming rewards in STEADY and esSTEADY.
● Vesting for esSTEADY tokens.

Project Scope
We reviewed and tested the smart contracts including STEADY, esSTEADY, TokenManager,
and Farms. There are other security-critical components of Steadefi, such as off-chain services,
the web front end, and all the other smart contracts. They are not included in the scope of this
security assessment. We recommend a further review of those components.

Summary of Findings

Severity # of Findings

High 1

Medium 1

Low 2

Informational 0

Total 4

Throughout the testing, we identified 4 issues of high, medium, and low severity:

● 1 issue of users being unable to withdraw their staked tokens
● 1 issue of wrong behavior of the owner function withdrawRewardTokens()
● 1 issue of index collision in the redeem array data structure
● 1 issue of missing events in the functions that change the important states of Farms

2023 Narya.ai
3

https://github.com/steadefi/steadefi-contracts
https://github.com/steadefi/steadefi-contracts/commit/82835ba2240beef856c56e8e4a5e241357b02db0

Disclaimer
This testing report should not be used as investment advice.

Narya.ai uses an automatic testing technique to test smart contracts' security properties and
business logic rapidly and continuously. However, we do not provide any guarantees on
eliminating all possible security issues. The technique has its limitations: for example, it may not
generate a random edge case that violates an invariant during the allotted time. Its use is also
limited by time and resource constraints.

Unlike time-boxed security assessment, Narya.ai advises continuing to create and update
security tests throughout the project’s lifetime. In addition, Narya.ai recommends proceeding
with several other independent audits and a public bug bounty program to ensure smart contract
security.

2023 Narya.ai
4

Project Overview
We manually review and test the security of four smart contracts:

● STEADY: An ERC20 contract that implements Steadefi’s native token.
● esSTEADY: An ERC20 contract that represents a non-transferable “escrowed” version of

STEADY. The esSTEADY tokens can only be transferred to the addresses included in
the whitelist by the owner.

● TokenManager: A contract used to convert STEADY tokens to esSTEADY, allocate them
into plugin contracts, and redeem esSTEADY.

● Farms: A contract used by the owner to create farms for a user to stake STEADY tokens
and claim rewards. It has the ability to boost the positions of a user.

Tests

Tested Invariants and Properties
We relied on the Narya engine that used a smart fuzzing approach to test the following [TODO]
invariants and properties of the smart contracts.

Table 1 Tested Invariants

ID Invariant/Property Description Found Bug(s)

01 Owner should be able to update the transfer whitelist for
esSTEADY Contract.

Passed

02 Owner Should be able to update the TokenManager address
for esSTEADY Contract.

Passed

03 STEADY value should be returned correctly by vesting
duration.

Passed

04 User should be able to convert STEADY to esSTEADY. Passed

05 Redemption should not be finalized before the duration is up. Passed

06 User should be able to redeem esSTEADY to STEADY for
maximum duration.

Passed

07 User should be able to cancel redeeming. Passed

08 User should be able to redeem the correct amount of tokens. Passed

09 User should be able to finalize multiple positions in any order. 2. Index collision in
redeem array

2023 Narya.ai
5

10 User should be able to set approvals for usage plugins. Passed

11 Owner should correctly set deallocation fees for usage
plugins.

Passed

12 User should be to allocate esSTEADY to a plugin. Passed

13 User should be to deallocate esSTEADY from a plugin. Passed

14 Owner should be able to create a new farm. Passed

15 Owner should be able to deposit reward tokens to Farms Passed

16 Owner should be able to withdraw reward tokens from Farms. 1. Wrong behavior of
withdrawRewardsToken
s()

17 User should be able to stake tokens to the active Farms Passed

18 Users should have earned reward from staking. Passed

19 Users should be able to claim rewards from Farms in
esSTEADY and STEADY tokens.

Passed

20 Users should not be able to transfer esSTEADY. Passed

21 Users should be able to claim their staked tokens and
rewards.

4. Users unable to
withdraw their stakes if
farm rewards less than
claimable

2023 Narya.ai
6

Key Findings and Recommendations

1. Wrong behavior of withdrawRewardsTokens()
Severity: Medium

Description
The withdrawRewardsTokens function of the Farms contract does have an expected behavior.
It duplicates the behavior of the depositRewardsTokens function.

Code 1 contracts/staking/Farms.sol#L434

function withdrawRewardsTokens(uint256 _id, uint256 _amount) external nonReentrant

onlyOwner {

Farm storage farm = farms[_id];

require(_amount > 0, "Cannot withdraw 0 amount");

require(

farm.totalRewards > 0, "Cannot withdraw when farm has no reward tokens

deposited"

);

require(

_amount <= farm.totalRewards,

"Cannot withdraw more reward tokens than deposited in farm"

);

IERC20(steady).safeTransfer(msg.sender, _amount);

farm.totalRewards += _amount;

}

Impact
The owner of the farm cannot withdraw reward tokens from the farm and thus lose them.

Failed Invariant

function testOwnerWithdrawRewardTokensFromFarm(uint256 _amountOfRewardTokens,

uint256 _amountOfWithdrawTokens) public {

vm.assume(_amountOfRewardTokens < steady.balanceOf(owner));

vm.assume(_amountOfRewardTokens > 0);

vm.assume(_amountOfWithdrawTokens < _amountOfRewardTokens);

vm.assume(_amountOfWithdrawTokens > 0);

_createNewFarm();

vm.startPrank(owner);

2023 Narya.ai
7

https://github.com/steadefi/steadefi-contracts/blob/82835ba2240beef856c56e8e4a5e241357b02db0/contracts/staking/Farms.sol#L434

farms.depositRewardsTokens(0, _amountOfRewardTokens);

farms.withdrawRewardsTokens(0, _amountOfWithdrawTokens);

Farms.Farm memory farm0 = _getFarm(0);

require(farm0.totalRewards == _amountOfRewardTokens -

_amountOfWithdrawTokens, "Total number of rewards is wrong");

}

Recommendation
● Change addresses for token transfer.
● Subtract the amount from total rewards.

Remediation
This issue has been acknowledged by Steadefi and several logic changes were made:

● Variable endTime was added to Farm struct to prevent acquiring of rewards after
block.timestamp has passed it.

● Logic of functions currentRewardPerStakedToken and _updateFarm also was
changed.

Issue was fixed at commit 1ba974db10693838aa7378ca2a5c9e14cb7cce56.

2023 Narya.ai
8

2. Index collision in redeem array
Severity: Low

Description
Users can have several redeem positions in the TokenManager contract. These positions will
have their own redeem indexes that users use when they want to finalize or cancel redemption.
If users want to redeem or cancel any position other than the last added, the indexes of other
positions will be changed, and users should take this into account when redeeming or cancelling
the next position.

Code 2 contracts/tokens/TokenManager.sol#L253-L264

function finalizeRedeem(uint256 _redeemIndex) external nonReentrant

validateRedeem(msg.sender, _redeemIndex) {

EsSTEADYBalance storage balance = esSTEADYBalances[msg.sender];

RedeemInfo storage _redeem = userRedeems[msg.sender][_redeemIndex];

require(_currentBlockTimestamp() >= _redeem.endTime, "finalizeRedeem: vesting

duration has not ended yet");

// remove from SBT total

balance.redeemingAmount = balance.redeemingAmount - (_redeem.esSTEADYAmount);

_finalizeRedeem(msg.sender, _redeem.esSTEADYAmount, _redeem.STEADYAmount);

// remove redeem entry

_deleteRedeemEntry(_redeemIndex);

}

function _deleteRedeemEntry(uint256 _index) internal {

userRedeems[msg.sender][_index] =

userRedeems[msg.sender][userRedeems[msg.sender].length - 1];

userRedeems[msg.sender].pop();

}

This happens because the userRedeems struct that represents the user's positions stores them
as an array. When the user calls finalizeRedeem it swaps the last element with the redeemed
one and the indexes of elements are changed.

Impact
If a user swaps the elements other than the last one and then redeems the last one, the
transaction will be reverted. This is because the index of the last element will be changed to the
the previous deleted entry.

2023 Narya.ai
9

https://github.com/steadefi/steadefi-contracts/blob/82835ba2240beef856c56e8e4a5e241357b02db0/contracts/tokens/TokenManager.sol#L253-L264

Failed Invariant

function testShouldFinalizeMultiplePositions() public {

_unpauseTokenManager();

vm.startPrank(user1);

tokenManager.convert(100e18);

uint256 STEADYBalanceBefore = steady.balanceOf(user1);

tokenManager.redeem(10e18, MIN_REDEEM_DURATION);

tokenManager.redeem(10e18, MID_REDEEM_DURATION);

tokenManager.redeem(10e18, MAX_REDEEM_DURATION);

skip(MIN_REDEEM_DURATION);

tokenManager.finalizeRedeem(0);

skip(MID_REDEEM_DURATION - MIN_REDEEM_DURATION);

tokenManager.finalizeRedeem(1);

skip(MAX_REDEEM_DURATION - MID_REDEEM_DURATION);

tokenManager.finalizeRedeem(2);

vm.stopPrank();

require(steady.balanceOf(user1) - STEADYBalanceBefore == ((10e18

* _durationToPercentage(MIN_REDEEM_DURATION) / 1e18)

+ (10e18

* _durationToPercentage(MID_REDEEM_DURATION) / 1e18)

+ (10e18

* _durationToPercentage(MAX_REDEEM_DURATION) / 1e18)), "Balance value is

wrong");

}

Recommendation
● Reorganize the userRedeems data structure from array to mapping
● Taking into account changing of indexes on the off-chain side and restricting user

behavior which can cause problem explained above

Remediation
This issue has been acknowledged by Steadefi. Steadefi decided to design the off-chain service
to read userRedeems mapping to determine the correct index before calling finalizeRedeem.
Therefore, Steadefi will not deploy any fix for this issue.

2023 Narya.ai
10

3. Missing events in the functions that change important
states
Severity: Low

Description
In the depositRewardsTokens and withdrawRewardsTokens functions that affect the status
of sensitive variables should be able to emit events as notifications to users.

Code 3 contracts/staking/Farms.sol#L420-L447

/**

* Deposit more reward tokens to a farm

* @param _id Unique id of farm

* @param _amount Amount of reward tokens to deposit; in reward token's

decimals

*/

function depositRewardsTokens(uint256 _id, uint256 _amount) external

nonReentrant onlyOwner {

require(_amount > 0, "Cannot deposit 0 amount");

Farm storage farm = farms[_id];

IERC20(steady).safeTransferFrom(msg.sender, address(this), _amount);

farm.totalRewards += _amount;

}

/**

* Deposit more reward tokens to a farm

* @param _id Unique id of farm

* @param _amount Amount of reward tokens to deposit; in reward token's

decimals

*/

function withdrawRewardsTokens(uint256 _id, uint256 _amount) external

nonReentrant onlyOwner {

Farm storage farm = farms[_id];

require(_amount > 0, "Cannot withdraw 0 amount");

require(

farm.totalRewards > 0, "Cannot withdraw when farm has no reward

tokens deposited"

);

require(

_amount <= farm.totalRewards,

2023 Narya.ai
11

https://github.com/steadefi/steadefi-contracts/blob/82835ba2240beef856c56e8e4a5e241357b02db0/contracts/staking/Farms.sol#L420-L447

"Cannot withdraw more reward tokens than deposited in farm"

);

IERC20(steady).safeTransfer(msg.sender, _amount);

farm.totalRewards += _amount;

}

Recommendation
Add events for these sensitive actions and emit them in the functions.

Remediation
This issue has been acknowledged by Steadefi and fixed at commit
bd072d07956c47d1edee87aa7362f2f693d09b8e.

2023 Narya.ai
12

4. Users are unable to withdraw their stakes if the farm
rewards are less than the claimable ones
Severity: High

Description
When a user calls the unstake function, the claim function invoked checks if the user has
earned rewards. When the earned rewards are bigger than total rewards in Farms, the
transaction will be reverted.

Code 4 contracts/staking/Farms.sol#L245-L306

function unstake(uint256 _id, uint256 _amount)

public

nonReentrant

whenNotPaused

{

require(_amount > 0, "Cannot unstake 0");

Position storage position = positions[_id][msg.sender];

require(position.stakedAmount >= _amount, "Cannot unstake more than

staked");

claim(_id);

_updateFarm(_id);

position.rewardsDebt = 0;

position.stakedAmount = position.stakedAmount - _amount;

_updateUserRewardsDebt(_id, msg.sender, position.stakedAmount);

Farm storage farm = farms[_id];

farm.totalStaked = farm.totalStaked - _amount;

IERC20(farm.stakedToken).safeTransfer(msg.sender, _amount);

emit Unstake(_id, msg.sender, farm.stakedToken, _amount);

}

function claim(uint256 _id) public whenNotPaused {

uint256 rewards = rewardsEarned(_id, msg.sender);

if (rewards > 0) {

Farm storage farm = farms[_id];

2023 Narya.ai
13

https://github.com/steadefi/steadefi-contracts/blob/82835ba2240beef856c56e8e4a5e241357b02db0/contracts/staking/Farms.sol#L245-L306

require(

farm.totalRewards >= rewards,

"Rewards deposited in farm less than rewards claimable"

);

Position memory position = positions[_id][msg.sender];

position.rewardsRedeemed = position.rewardsRedeemed + rewards;

position.rewardsDebt = position.stakedAmount *

currentRewardPerStakedToken(_id)

* getRewardMultiplier(_id, msg.sender)

/ SAFE_MULTIPLIER;

positions[_id][msg.sender] = position;

farm.totalRewards -= rewards;

if (farm.esSteadySplit > 0) {

uint256 esSteadyAmount = rewards * farm.esSteadySplit /

SAFE_MULTIPLIER;

uint256 steadyAmount = rewards - esSteadyAmount;

IERC20(steady).safeTransfer(msg.sender, steadyAmount);

ITokenManager(tokenManager).convertTo(esSteadyAmount,

msg.sender);

} else {

IERC20(steady).safeTransfer(msg.sender, rewards);

}

emit Claim(_id, msg.sender, steady, rewards);

}

}

Impact
User funds used for staking may get stuck in a staking contract, which requires the owner to
deposit additional rewards to the farm. Another way to allow the user to unstake the staked
tokens is to change d to 0. But this leads to losing all earned rewards for users.

Failed Invariant

function testUserShouldBeAbleToUnstakeAndClaimEverything(uint256 _time)

public {

vm.assume(_time < 100 days);

2023 Narya.ai
14

vm.assume(_time > 0);

_createNewFarm();

_ownerDepositsReward();

_userStakesTokensToFarm();

skip(20);

vm.startPrank(user1);

farms.claim(0);

skip(_time);

farms.unstake(0, 10e18);

Farms.Farm memory farm0 = _getFarm(0);

Farms.Position memory positionUser1 = _getPosition(0, user1);

require(farms.rewardsEarned(0, user1) == 0, "Rewards Earned value

is wrong");

}

Recommendation
● Revising the staking logic.
● Supporting a user to unstake the rewards in case his earned rewards are more than the

rewards in the farm.

Remediation
This issue has been acknowledged by Steadefi and fixed at commit
24868f48cee9468d40031e3470b80bb3d990e4c5.

2023 Narya.ai
15

Fix Log

Table 6 Fix Log

ID Title Severity Status

01 Wrong behavior of withdrawRewardsTokens() Medium Fixed at commit
1ba974db10693838aa7378

ca2a5c9e14cb7cce56

02 Index collision in redeem array Medium Acknowledged*

03 Missing events in the functions that change
important states

Low Fixed at commit
bd072d07956c47d1edee87

aa7362f2f693d09b8e

04 Users are unable to withdraw their stakes if the
farm rewards are less than the claimable ones

High Fixed at commit
24868f48cee9468d40031e3

470b80bb3d990e4c5
* The issues have been acknowledged by Steadefi but won’t be fully fixed or mitigated at the time of this
report. Check the former description of each issue for details.

2023 Narya.ai
16

Appendix

Severity Categories

Severity Description

Gas Gas optimization

Low A low-severity issue does not put assets at risk such as function being
inconsistent with specification or issues with comments.

Medium A medium-severity issue puts assets at risk not directly but with a
hypothetical attack path, stated assumptions, or external requirements.
Or the issue impacts the functionalities or availability of the protocol.

High A high-severity issue directly results in assets being stolen, lost or
compromised.

2023 Narya.ai
17

