

04/05/2023

Prediction Market v2

Public

Report

All information collected here is strictly confidential and may

only be distributed with Polkamarkets express authorization.

Prediction Market v2 Public Report

www.red4sec.com

2

Content
Introduction ... 3

Disclaimer .. 3

Scope .. 4

Executive Summary ... 4

Conclusions .. 5

Vulnerabilities ... 6

List of vulnerabilities ... 6

Vulnerability details .. 6

Reentrancy pattern .. 7

Insufficient required balance validation ... 9

Insecure token transfers ... 10

Incompatible with variable balance tokens .. 11

Limited ether transfer .. 12

Lack of inputs validation ... 13

Optimize error reporting ... 14

Outdated compiler ... 16

Code quality .. 17

GAS optimization ... 19

Annexes ... 22

Methodology .. 22

Manual Analysis ... 22

Automatic Analysis... 22

Vulnerabilities Severity .. 23

Prediction Market v2 Public Report

www.red4sec.com

3

Introduction
Polkamarkets is a DeFi-Powered Prediction Market built for cross-chain information

exchange and trading with the purpose of users taking positions on outcomes of real-world

events in what aims to be a decentralized and interoperable platform based on Polkadot.

Polkamarkets aims to solve the low usage & volume problems by incentivising liquidity providers

and traders to facilitate & take large positions, while a system for curation and resolution

ensures efficient and trustworthy markets.

As solicited by Polkamarkets and as part of the vulnerability review and management process,

Red4Sec has been requested to perform a security code audit in order to evaluate the security

of the Prediction Market v2 project.

This Public Report has been prepared for Polkamarkets and presents a summary of the

results of the security of the project audited. It is based on the technical report which contains

all the details and technical descriptions of the security assessment, this report does not contain

all technical details and may not include all the issues identified during the audit.

Disclaimer
This document only represents the results of the code audit conducted by Red4Sec

Cybersecurity and should not be used in any way to make investment decisions or as

investment advice on a project.

Likewise, the report should not be considered either "endorsement" nor "disapproval" of the

guarantee of the correct business model of the analyzed project, nor as guarantee on the

operation or viability of the implemented financial product.

Red4Sec makes full effort and applies every resource available for each audit, however it does

not warrant the function, nor the safety of the project and it cannot be deemed a sufficient

assessment of the code's utility and safety, bug-free status, or any other declarations of the

project. Additionally, Red4Sec makes no security assessments or judgments about the

underlying business strategy, or the individuals involved in the project.

Blockchain technology and cryptographic assets come with their own new risks and challenges,

where the ecosystem, platform, its programming language, and other software related to said

technology can have vulnerabilities that could lead to exploits. As a result, the audit cannot

guarantee the explicit security of the audited projects.

The audit reports can be used to improve the code quality of smart contracts, to help limit the

vectors of attack and to lower the high level of risks associated with utilizing new and

continually changing technologies such as cryptographic tokens and blockchain, but they are

unable to detect any future security concerns with the related technologies.

Prediction Market v2 Public Report

www.red4sec.com

4

Audit Scope
Red4Sec Cybersecurity has made a thorough audit of the Prediction Market v2 security level

against attacks, identifying possible errors in the design, configuration, or programming;

therefore, guaranteeing the availability, integrity and confidentiality of the project and the

possible assets treated and stored.

The scope of this evaluation includes the following items provided by Polkamarkets:

• https://github.com/Polkamarkets/polkamarkets-js/tree/feature/v2/contracts

o branch: feature/v2

o commit: 25e77512f91e6337dff5fb396941e8734537a5ae

o PredictionMarketV2.sol

Executive Summary
The security audit against Prediction Market v2 has been conducted between the following

dates: 03/04/2023 and 21/04/2023.

Once the analysis of the technical aspects has been completed, the performed analysis shows

that the audited source code contained vulnerabilities that that were successfully mitigated by

the Polkamarkets team.

During the analysis, a total of 10 vulnerabilities were detected, these vulnerabilities have

been classified by the following level of risks, defined in Vulnerabilities Severity annex.

Informative

Low

Medium

High

0 1 2 3 4 5 6 7 8

VULNERABILITY SUMMARY

https://github.com/Polkamarkets/polkamarkets-js/tree/feature/v2/contracts
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol

Prediction Market v2 Public Report

www.red4sec.com

5

Conclusions
To this date, 05/04/2023, the general conclusion resulting from the conducted audit is that

the Prediction Market project is secure and does not present any known vulnerabilities. The

development team has solved all the deficiencies detected during the audit to ensure the

confidentiality, integrity and availability of the project.

The general conclusions of the performed audit are:

• It is important to mention that PredictionMarket did not support all non-standard token

transfers, such as USDT, but the development team applied the necessary measures to

correct this behavior.

• The proper functioning of the PredictionMarket relies on external contracts

(RealitioERC20) which are out of scope in the current audit, as well as the responsibility

to properly resolve the markets.

• A Reentrancy pattern was detected during the security audit, but with limited

conditions for its exploitation. This issue has been correctly solved, consequently

improving the security of the contract.

• Certain methods did not make the necessary input checks in order to guarantee the

integrity and expected arguments format.

• The project was developed using an outdated compiler version with major known bugs,

this is an absolutely discouraged practice and have been resolved before deployment.

• It is important to highlight that the present document is a public report and does not

report all the technical details.

To deal with the detected vulnerabilities, an action plan was elaborated to guarantee their

resolution, prioritizing those vulnerabilities with the highest risk. Consequently, Polkamarkets

has satisfactorily solved all the issues found and applied the necessary recommendations.

Prediction Market v2 Public Report

www.red4sec.com

6

Vulnerabilities
In this section, you can find a detailed analysis of the vulnerabilities encountered upon the

security audit.

List of vulnerabilities
Below, we have gathered a complete list of the vulnerabilities detected by Red4Sec, presented,

and summarized in a way that can be used for risk management and mitigation.

Table of vulnerabilities

Vulnerability Risk State

Reentrancy pattern Low Fixed

Insufficient required balance validation Low Assumed

Insecure token transfers Low Fixed

Incompatible with variable balance tokens Informative Assumed

Limited ether transfer Informative Fixed

Lack of inputs validation Informative Fixed

Optimize error reporting Informative Partially Fixed

Outdated compiler Informative Fixed

Code quality Informative Fixed

GAS optimization Informative Fixed

Vulnerability details
In this section, we provide the details of each of the detected vulnerabilities indicating the

following aspects:

• Category

• Active

• Risk

• Description

• Recommendations

Prediction Market v2 Public Report

www.red4sec.com

7

Reentrancy pattern

Category Risk State

Timing and State Low Fixed

The Reentrancy attack is a vulnerability that occurs when external contract calls can make new

calls to the calling contract before the initial execution is completed. For a function, this means

that the state of the contract could change in the middle of its execution as a result of a call to

an untrusted contract or the use of a low-level function with an external address.

One way to mitigate this vulnerability is to use a checks-effects-interactions pattern in the

contract design. In this pattern, the contract first performs all the necessary checks to ensure

that the function call is valid and then performs all the state changes before interacting with

other contracts or accounts.

By following this important security measure, the contract can ensure that it completes all state

changes before allowing any external interactions, preventing reentrancy and other types of

attacks in smart contracts.

When PredictionMarketV2 interacts with the ERC-20 token of each market, it delegates the

execution flow to an external contract, arbitrarily configured by the user when creating the

market.

This market.token may contain reentrancy issues, if it reacts in any way to transfer, or

malicious functions, which can be exploited in the buy, sell, and claimFees methods.

In the case of the _buy and _sell methods, the values are updated after the external calls are

made, so the call can be redirected to any method before updating the values. This would allow

the market maker to re-enter the function and buy or sell shares at an old price that does not

reflect the actual volume value.

_buy method

Prediction Market v2 Public Report

www.red4sec.com

8

In the case of claimFees, used internally by _removeLiquidity and _claimLiquidity, it also

makes interaction with an external contract and is susceptible to lead to reentrancy situations.

Since the project intends to work with third-party tokens, it is recommended to fix all

reentrancy patterns by applying the checks-effects-interactions pattern and adding the

nonReentrant modifier.

Recommendations
It is essential to always make the state changes in the storage before making

transfers or calls to external contracts, in addition to implementing the necessary measures

to avoid duplicated calls or chain calls to the methods. A good practice to avoid reentrancy is to

organize the code according to the following pattern:

• The first step is conducting all necessary checks.

• The next step is the application of all effects.

• All external interactions take place in the last step.

References

• https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

• https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard

Source Code References

• PredictionMarketV2.sol#L390

• PredictionMarketV2.sol#L458

• PredictionMarketV2.sol#L893

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/13

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L390
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L458
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L893
https://github.com/Polkamarkets/polkamarkets-js/pull/13

Prediction Market v2 Public Report

www.red4sec.com

9

Insufficient required balance validation

Category Risk State

Design Weaknesses Low Assumed

The requirement of the balance set to create the markets can be eluded with an ephemeral

balance product of a flash loan or a chained operation of swaps.

The mustHoldRequiredBalance modifier only checks the current balance, but not its antiquity.

Additionally, it does not require any type of staking of the tokens, so it is only necessary to

fulfill the requirement during the createMarket invocation.

The required balance can be obtained requiredBalance, create a market and return the

purchased token in the same transaction, without having to be the actual holder of the

requiredBalanceToken token or demonstrate any commitment to the project.

Recommendations

• Make a stake of the tokens to be able to create the market in the next block.

Source Code References

• PredictionMarketV2.sol#L193-L199

• PredictionMarketV2.sol#L233

• PredictionMarketV2.sol#L219-L220

Fixes Review
Polkamarkets team explanation:

"While it is true that the mustHoldRequiredBalance modifier checks only the current balance and

not its age, exploiting this loophole via flash loans or chained swaps would require significant

effort and technical expertise. Furthermore, the incentive to do so is relatively low, as creating a

market does not inherently provide any immediate financial gain for the exploiter."

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L193-L199
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L233
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L219-L220

Prediction Market v2 Public Report

www.red4sec.com

10

Insecure token transfers

Category Risk State

Design Weaknesses Low Fixed

The ERC-20 standard specifies that the transfer and transferFrom methods must return a

boolean with the result of this operation. However, it must be considered that certain tokens,

such as USDT, do not strictly implement the standard, since they do not return the boolean

type returning void instead. For this reason, if these cases are not covered, this call will fail

whenever the token does not return the expected boolean, which could deny the use of third-

party tokens.

The PredictionMarketV2 contract does not cover these cases, so it is recommended to use

safeTransfer and safeTransferFrom from openzeppelin's SafeERC20 library when interacting

with third-party tokens.

Recommendations

• It is recommended to use SafeERC20 from OpenZeppelin contracts, which already makes

the verification after the execution of the transfers.

References

• https://eips.ethereum.org/EIPS/eip-20

• https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20

Source Code References

• PredictionMarketV2.sol#L296

• PredictionMarketV2.sol#L390

• PredictionMarketV2.sol#L415

• PredictionMarketV2.sol#L458

• PredictionMarketV2.sol#L481

• PredictionMarketV2.sol#L606

• PredictionMarketV2.sol#L694

• PredictionMarketV2.sol#L760

• PredictionMarketV2.sol#L809

• PredictionMarketV2.sol#L856

• PredictionMarketV2.sol#L893

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/14

https://eips.ethereum.org/EIPS/eip-20
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L296
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L390
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L415
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L458
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L481
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L606
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L694
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L760
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L809
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L856
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L893
https://github.com/Polkamarkets/polkamarkets-js/pull/14

Prediction Market v2 Public Report

www.red4sec.com

11

Incompatible with variable balance tokens

Category Risk State

Undefined Behavior Informative Assumed

It is important to acknowledge that the logic of the contract does not contemplate the use of

tokens with variable balance, such as aDAI or Ampleforth. If the user deposited an aDAI,

interest would be generated in the contract and could never be claimed by the owner or the

project, being locked in the contract forever.

Additionally, it does not contemplate ERC20 tokens with fee during the transferFrom, therefore,

the amount received by the PredictionMarketV2 will be less than the expected to conduct the

transfer.

Moreover, some tokens may implement a fee during transfers, this is the case of USDT, even

though the project has currently set it to 0. So, the transferFrom function would return true

despite receiving less than expected.

As shares are generated without taking said fee into consideration, the records do not reflect

the real balance and other market users will end up assuming the cost of the fee.

References

• https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

Source Code References

• PredictionMarketV2.sol#L296

• PredictionMarketV2.sol#L415

• PredictionMarketV2.sol#L606

• PredictionMarketV2.sol#L694

• PredictionMarketV2.sol#L390

• PredictionMarketV2.sol#L458

• PredictionMarketV2.sol#L481

• PredictionMarketV2.sol#L694

• PredictionMarketV2.sol#L760

• PredictionMarketV2.sol#L809

• PredictionMarketV2.sol#L856

• PredictionMarketV2.sol#L893

Fixes Review
Polkamarkets team explanation:

"We have deliberately designed our system to be compatible with standard ERC20 tokens,

which are our users' primary tokens of choice. By doing this, we avoid the complications of

handling variable balance tokens and can focus on providing a seamless user experience with

stable tokens."

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L296
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L415
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L606
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L694
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L390
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L458
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L481
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L694
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L760
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L809
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L856
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L893

Prediction Market v2 Public Report

www.red4sec.com

12

Limited ether transfer

Category Risk State

Undefined Behavior Informative Fixed

Because the method for transferring ether used is transfer (which is limited to 2300 gas) and

call is not used, which would be limited to the gas provided by the user in the transaction. If a

contract implements a fallback method that consumes more than 2300 gas, it may not work

properly with the PredictionMarketV2 contract.

The recommended option to send Ether depends on each specific scenario and the needs of the

contract, so the project must study which option best suits its needs.

Following the different ways to send ether:

• transfer: If a fallback function is not provided in the receiving smart contract, the call to

transfer will fail. 2300 gas is the maximum allowed, which is sufficient to finish the

transfer process. To guard against reentry assaults, and it is hardcoded.

• send: It functions similarly to a transfer call and has a 2300 gas cap as well. The status

is given back as a boolean.

• call: It is advised to use this method when sending ETH to a smart contract. The fallback

feature of the receiving addresses is activated by the empty parameter.

Recommendations

• Use the call call to send ether.

Source Code References

• PredictionMarketV2.sol#L498

• PredictionMarketV2.sol#L701

• PredictionMarketV2.sol#L767

• PredictionMarketV2.sol#L816

• PredictionMarketV2.sol#L863

• PredictionMarketV2.sol#L900

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/15

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L498
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L701
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L767
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L816
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L863
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L900
https://github.com/Polkamarkets/polkamarkets-js/pull/15

Prediction Market v2 Public Report

www.red4sec.com

13

Lack of inputs validation

Category Risk State

Data Validation Informative Fixed

The arguments of the constructor in the PredictionMarketV2 contract do not properly check

the arguments, _requiredBalanceToken, _WETH, _realitioTimeout and _requiredBalance, which

can lead to major errors.

In the case of the addresses for external smart contracts, it is recommended to use the

supportsInterface method of the EIP-165 if possible, to verify that the established contracts

contain the expected functionalities.

Source Code References

• PredictionMarketV2.sol#L210-L214

In the case of WETH, the only method that checks its value is sellToETH, but it is not checked in

the constructor, nor in the rest of the methods that use WETH. Since the contract cannot work

with WETH = address(0) this verification should be done in the constructor.

Source Code References

• PredictionMarketV2.sol#L302

• PredictionMarketV2.sol#L320

• PredictionMarketV2.sol#L426

• PredictionMarketV2.sol#L490

• PredictionMarketV2.sol#L614

• PredictionMarketV2.sol#L700

• PredictionMarketV2.sol#L766

• PredictionMarketV2.sol#L815

• PredictionMarketV2.sol#L862

• PredictionMarketV2.sol#L899

Recommendations

• It is recommended to check that the inputs of the user are as expected in order to

guarantee the correct functioning of the contract.

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/16

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L210-L214
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L302
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L320
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L426
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L490
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L614
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L700
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L766
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L815
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L862
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L899
https://github.com/Polkamarkets/polkamarkets-js/pull/16

Prediction Market v2 Public Report

www.red4sec.com

14

Optimize error reporting

Category Risk State

Auditing and Logging Informative Partially Fixed

The project has adequate error handling and clear error messages, however, the system for

reporting errors can be optimized by using the improvements introduced in the latest solidity

versions for a more efficient form of notifying users about a failure in the operation of the

project and lower GAS consumption.

Reduce require messages length
Ethereum Virtual Machine operates under a 32-byte word memory model where an additional

gas cost is paid by any operation that expands the memory that is in use.

Therefore, exceeding error messages of this length means increasing the number of slots

necessary to process the require, reducing the error messages to 32 bytes or less would lead to

saving gas.

Source Code References

• PredictionMarketV2.sol#L194

• PredictionMarketV2.sol#L240

• PredictionMarketV2.sol#L242

• PredictionMarketV2.sol#L303

• PredictionMarketV2.sol#L399

• PredictionMarketV2.sol#L444

• PredictionMarketV2.sol#L463

• PredictionMarketV2.sol#L518

• PredictionMarketV2.sol#L538

• PredictionMarketV2.sol#L626

• PredictionMarketV2.sol#L731

• PredictionMarketV2.sol#L732

• PredictionMarketV2.sol#L738

• PredictionMarketV2.sol#L779

• PredictionMarketV2.sol#L780

• PredictionMarketV2.sol#L787

• PredictionMarketV2.sol#L826

• PredictionMarketV2.sol#L827

• PredictionMarketV2.sol#L834

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L194
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L240
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L242
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L303
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L399
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L444
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L463
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L518
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L538
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L626
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L731
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L732
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L738
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L779
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L780
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L787
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L826
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L827
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L834

Prediction Market v2 Public Report

www.red4sec.com

15

Use custom errors instead of require
Custom errors are more gas efficient than revert strings in terms of deployment and runtime

cost when the revert condition is met. The require statement is more expensive than the use of

custom errors because it requires placing the error message on the stack, whether or not the

transaction is reverted and regardless of the result of the condition.

Solidity 0.8.4 introduced custom errors, a more efficient way to notify users of an operation

failure, The new custom errors are defined through the error statement, and they can also

receive arguments. As indicated in the following illustrative example:

error Unauthorized();
error InsufficientPrice(uint256 available, uint256 required);

Afterwards, it is enough to just call them when needed using if conditionals:

if (msg.sender != owner) revert Unauthorized();
if (amount > balance[msg.sender]) {
 revert InsufficientPrice({
 available: balance[msg.sender],
 required: amount
 });
}

This behavior has been observed throughout the entire contract.

Source Code References

• PredictionMarketV2.sol

References

• https://blog.soliditylang.org/2021/04/21/custom-errors

Fixes Review
This issue has been partially addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/20

Although the require messages length has been fixed, it would be more optimal to use solidity

custom errors.

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/contracts/PredictionMarketV2.sol
https://blog.soliditylang.org/2021/04/21/custom-errors
https://github.com/Polkamarkets/polkamarkets-js/pull/20

Prediction Market v2 Public Report

www.red4sec.com

16

Outdated compiler

Category Risk State

Outdated Software Informative Fixed

Solc frequently launches new versions of the compiler. Using an outdated version of the

compiler can be problematic, especially if there are errors that have been made public or known

vulnerabilities that affect this version. The project has set the ^0.8.10 compiler version in the

config.

Solidity branches up to version 0.8.18 has important bug fixes, such as an [issue] that leads to

larger builds with unnecessary code, so it is recommended to use the most up to date version of

the compiler.

Additionally, as can be seen in the following image, the ABIEncoderV2 is being used. This Solidity

functionality is used to encode and decode complex data structures.

Previously, it was necessary to specify the use of this function in older Solidity branches,

however, from version 0.8.0 ABI coder v2 is activated by default. So, the pragma pragma

experimental ABIEncoderV2; is still valid, but it is deprecated and has no effect.

Recommendations

• It is always a good policy to use the most up to date version of the pragma.

References

• https://github.com/ethereum/solidity/blob/develop/Changelog.md

• https://docs.soliditylang.org/en/v0.8.0/080-breaking-changes.html

Source Code References

• PredictionMarketV2.sol#L1

• PredictionMarketV2.sol#L2

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/17

https://github.com/ethereum/solidity/issues/13680
https://github.com/ethereum/solidity/blob/develop/Changelog.md
https://docs.soliditylang.org/en/v0.8.0/080-breaking-changes.html
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L2
https://github.com/Polkamarkets/polkamarkets-js/pull/17

Prediction Market v2 Public Report

www.red4sec.com

17

Code quality

Category Risk State

Codebase Quality Informative Fixed

During the audit of the Smart Contract certain bad practices have been detected throughout the

code that should be improved, it is always recommended to apply various coding styles and

good practices. This is a very common bad practice, especially in these types of projects that

are continually changing and improving. This is not a vulnerability in itself, but it helps to

improve the code and to reduce the appearance of new vulnerabilities.

Following, we detail a few points that could be improved in terms of style, quality, and

readability of the code throughout the audited contract.

Unnecessary SafeMath
The smart contracts analyzed inherit functionalities from OpenZeppelin contracts that are

unnecessary. This does not imply a vulnerability by itself, but it makes it difficult to understand

and maintain the code, as well as unnecessarily increasing its execution cost.

The PredictionMarketV2 contract imports the SafeMath library, however, it is not necessary

since the release of the pragma version 0.8, Therefore, it is advisable to eliminate its use from

the contract in order to make it more understandable and maintainable, and its elimination

would save Gas both in the execution time and during the deployment of the contract.

Source Code References

• PredictionMarketV2.sol#L7

Avoid hardcoded values
In order to improve the readability of the code and make it more user-friendly, maintainable,

and auditable, it is recommended to modify the value of the MAX_UINT_256 variable using

constants that are already defined in the compiler itself, as in this case it would be

type(uint256). max.

Source Code References

• PredictionMarketV2.sol#L68

Recommendations
As a reference, it is always recommendable to apply some coding style/good practices that can

be found in multiple standards such as:

• Solidity Style Guide

• These references are very useful to improve the quality of the smart contract. A few of

these practices are generally known and accepted forms to develop software.

References

• https://docs.soliditylang.org/en/v0.8.19/style-guide.html

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L7
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L68
https://docs.soliditylang.org/en/v0.8.19/style-guide.html
https://docs.soliditylang.org/en/v0.8.19/style-guide.html

Prediction Market v2 Public Report

www.red4sec.com

18

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/18

https://github.com/Polkamarkets/polkamarkets-js/pull/18

Prediction Market v2 Public Report

www.red4sec.com

19

GAS optimization

Category Risk State

Codebase Quality Informative Fixed

Software optimization is the process of modifying a software system to make an aspect of it

work more efficiently or use less resources. This premise must be applied to smart contracts as

well, so that they execute faster or in order to save GAS.

On EVM blockchain, GAS is an execution fee which is used to compensate miners for the

computational resources required to power smart contracts. If the network usage is increasing,

so will the value of GAS optimization.

These are some of the requirements that must be met to reduce GAS consumption:

• Short-circuiting.

• Remove redundant or dead code.

• Delete unnecessary libraries.

• Explicit function visibility.

• Use of proper data types.

• Use hard-coded constant instead of state variables.

• Avoid expensive operations in a loop.

• Pay special attention to arithmetical operations and comparisons.

Logic optimizations
A possible optimization has been identified that would save Gas whenever the _buy method is

called. As can be seen in the following image, a subtraction is performed between the value of

valueMinusFees and treasuryFeeAmount. However, this logic only makes sense if the value of

treasuryFeeAmount is greater than 0. Therefore, in order to avoid performing unnecessary

arithmetic operations, it is recommended to perform the operation inside the conditional: if

(treasuryFeeAmount > 0).

Therefore, by optimizing this function, the cost of GAS in each transaction will be lower, saving

the users costs in GAS.

Source Code References

• PredictionMarketV2.sol#L392

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L392

Prediction Market v2 Public Report

www.red4sec.com

20

Storage optimization
The use of the immutable keyword is recommended to obtain less expensive executions, by

having the same behaviour as a constant. However, by defining its value in the constructor we

have a significant saving of GAS.

References

• https://docs.soliditylang.org/en/v0.8.0/contracts.html#immutable

Source Code References

• PredictionMarketV2.sol#L156-L162

Increase operation optimization
During the audit, it was found that it is possible to optimize all the for loops in the project.

There are two main ways to increment a variable in solidity:

++i will increment the value of i, and then return the incremented value.
i++ will increment the value of i, but return the original value that i held before
being incremented.

Since the return of the increment operation of the for loop is indifferent and discarded, both i++

or ++i instructions are completely valid instructions, however, the ++i instruction has a

considerably lower cost compared to incrementing a variable using i++, for this reason it is

convenient to use ++i for the increments of the for loops.

An example of this behaviour can be seen below:

References

• https://docs.soliditylang.org/en/latest/types.html#compound-and-increment-decrement-

operators

Source Code References

• PredictionMarketV2.sol#L336

• PredictionMarketV2.sol#L358

• PredictionMarketV2.sol#L521

• PredictionMarketV2.sol#L526

https://docs.soliditylang.org/en/v0.8.0/contracts.html#immutable
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L156-L162
https://docs.soliditylang.org/en/latest/types.html#compound-and-increment-decrement-operators
https://docs.soliditylang.org/en/latest/types.html#compound-and-increment-decrement-operators
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L336
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L358
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L521
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L526

Prediction Market v2 Public Report

www.red4sec.com

21

• PredictionMarketV2.sol#L541

• PredictionMarketV2.sol#L546

• PredictionMarketV2.sol#L565

• PredictionMarketV2.sol#L574

• PredictionMarketV2.sol#L638

• PredictionMarketV2.sol#L645

• PredictionMarketV2.sol#L656

• PredictionMarketV2.sol#L665

• PredictionMarketV2.sol#L933

• PredictionMarketV2.sol#L944

• PredictionMarketV2.sol#L961

• PredictionMarketV2.sol#L1014

• PredictionMarketV2.sol#L1129

• PredictionMarketV2.sol#L1140

• PredictionMarketV2.sol#L1159

• PredictionMarketV2.sol#L1203

• PredictionMarketV2.sol#L1220

• PredictionMarketV2.sol#L1248

Fixes Review
This issue has been addressed in the following pull request:

• https://github.com/Polkamarkets/polkamarkets-js/pull/19

https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L541
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L546
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L565
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L574
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L638
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L645
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L656
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L665
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L933
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L944
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L961
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1014
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1129
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1140
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1159
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1203
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1220
https://github.com/Polkamarkets/polkamarkets-js/blob/25e77512f91e6337dff5fb396941e8734537a5ae/contracts/PredictionMarketV2.sol#L1248
https://github.com/Polkamarkets/polkamarkets-js/pull/19

Prediction Market v2 Public Report

www.red4sec.com

22

Annexes

Methodology

A code audit is a thorough examination of the source code of a project with the objective of

identifying errors, discovering security breaches, or contraventions of programming standards.

It is an essential component to the defense in programming, which seeks to minimize errors

prior to the deployment of the product.

Red4Sec adopts a set of cybersecurity tools and best security practices to audit the source code

of the smart contract by conducting a search for vulnerabilities and flaws.

The audit team performs an analysis on the functionality of the code, a manual audit, and

automated verifications, considering the following crucial features of the code:

• The implementation conforms to protocol standards and adheres to best coding

practices.

• The code is secure against common and uncommon vectors of attack.

• The logic of the contract complies with the specifications and intentions of the client.

• The business logic and the interactions with similar industry protocols do not contain

errors or lead to dangerous situations for the integrity of the system.

In order to standardize the evaluation, the audit is executed by industry experts, in accordance

with the following procedures:

Manual Analysis

• Manual review of the code, line-by-line, to discover errors or unexpected conditions.

• Assess the overall structure, complexity, and quality of the project.

• Search for issues based on the SWC Registry and known attacks.

• Review known vulnerabilities in the third-party libraries used.

• Analysis of the business logic and algorithms of the protocol to identify potential risk

exposures.

• Manual testing to verify the operation, optimization, and stability of the code.

Automatic Analysis

• Scan the source code with static and dynamic security tools to search for known

vulnerabilities.

• Manual verification of all the issues found by the tools and analyzes their possible

impact.

• Perform unit tests and verify the coverage.

Prediction Market v2 Public Report

www.red4sec.com

23

Vulnerabilities Severity

Red4Sec determines the severity of vulnerabilities found in risk levels according to the impact

level defined by CVSSv3 (Common Vulnerability Scoring System) by the National Institute of

Standards and Technology (NIST), classifying the risk of vulnerabilities on the following scale:

Severity Description

Critical

Vulnerabilities that possess the highest impact over the systems, services

and/or sensitive information. The existence of these vulnerabilities is

dangerous and should be fixed as soon as possible.

High

Vulnerabilities that could compromise severely compromise the service or

the information it manages even if the vulnerability requires expertise to be

exploited.

Medium
Vulnerabilities that on their own can have a limited impact and/or that

combined with other vulnerabilities could have a greater impact.

Low

These vulnerabilities do not suppose a real risk for the systems.

Also includes vulnerabilities which are extremely hard to exploit or whose

impact on the service is low.

Informative

It covers various characteristics, information or behaviours that can be

considered as inappropriate, without being considered as vulnerabilities by

themselves.

Prediction Market v2 Public Report

www.red4sec.com

24

Invest in Security, invest in your future

	Introduction
	Disclaimer
	Audit Scope
	Executive Summary
	Conclusions
	Vulnerabilities
	List of vulnerabilities
	Vulnerability details
	Reentrancy pattern
	Recommendations
	References
	Source Code References
	Fixes Review

	Insufficient required balance validation
	Recommendations
	Source Code References
	Fixes Review

	Insecure token transfers
	Recommendations
	References
	Source Code References
	Fixes Review

	Incompatible with variable balance tokens
	References
	Source Code References
	Fixes Review

	Limited ether transfer
	Recommendations
	Source Code References
	Fixes Review

	Lack of inputs validation
	Source Code References
	Source Code References
	Recommendations
	Fixes Review

	Optimize error reporting
	Reduce require messages length
	Source Code References

	Use custom errors instead of require
	Source Code References
	References

	Fixes Review

	Outdated compiler
	Recommendations
	References
	Source Code References
	Fixes Review

	Code quality
	Unnecessary SafeMath
	Source Code References

	Avoid hardcoded values
	Source Code References

	Recommendations
	References
	Fixes Review

	GAS optimization
	Logic optimizations
	Source Code References

	Storage optimization
	References
	Source Code References

	Increase operation optimization
	References
	Source Code References

	Fixes Review

	Annexes
	Methodology
	Manual Analysis
	Automatic Analysis

	Vulnerabilities Severity

